Flat band physics in the charge-density wave state of 1T-TaS2 and 1T-TaSe2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amir Dalal, Jonathan Ruhman, Jörn W. F. Venderbos
{"title":"Flat band physics in the charge-density wave state of 1T-TaS2 and 1T-TaSe2","authors":"Amir Dalal, Jonathan Ruhman, Jörn W. F. Venderbos","doi":"10.1038/s41535-025-00747-6","DOIUrl":null,"url":null,"abstract":"<p>1<i>T</i>-TaS<sub>2</sub> is a non-magnetic Mott insulating transition-metal dichalcogenide with an odd number of electrons per unit cell, making it a potential spin-liquid candidate. This behavior arises from miniband reconstructions in the charge density wave state, producing a nearly flat band at half-filling. We revisit its electronic band structure using a nearest-neighbor tight-binding model, emphasizing the importance of often-neglected “spin-flip” terms in the spin-orbit coupling. By comparing with density functional theory calculations, we estimate the strength of these couplings. We also apply our theory to 1<i>T</i>-TaSe<sub>2</sub>, which is found to be a promising candidate for a topologically non-trivial flat band. Our findings have significant implications for correlated physics in the flat band, including the emergent spin-spin Hamiltonian at half-filling, identified as a <i>J</i>-<i>K</i>-<i>Γ</i>-<span>\\(\\Gamma ^{\\prime}\\)</span> model on a triangular lattice, and for tuning electronic properties away from half-filling.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"56 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00747-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

1T-TaS2 is a non-magnetic Mott insulating transition-metal dichalcogenide with an odd number of electrons per unit cell, making it a potential spin-liquid candidate. This behavior arises from miniband reconstructions in the charge density wave state, producing a nearly flat band at half-filling. We revisit its electronic band structure using a nearest-neighbor tight-binding model, emphasizing the importance of often-neglected “spin-flip” terms in the spin-orbit coupling. By comparing with density functional theory calculations, we estimate the strength of these couplings. We also apply our theory to 1T-TaSe2, which is found to be a promising candidate for a topologically non-trivial flat band. Our findings have significant implications for correlated physics in the flat band, including the emergent spin-spin Hamiltonian at half-filling, identified as a J-K-Γ-\(\Gamma ^{\prime}\) model on a triangular lattice, and for tuning electronic properties away from half-filling.

Abstract Image

1T-TaS2和1T-TaSe2电荷密度波态的平带物理
1T-TaS2是一种非磁性莫特绝缘过渡金属二硫族化合物,每单位电池有奇数个电子,这使它成为潜在的自旋液体候选者。这种行为源于电荷密度波状态下的小带重构,在半填充时产生一个近乎平坦的带。我们使用最近邻紧密结合模型重新审视了它的电子能带结构,强调了在自旋轨道耦合中经常被忽视的“自旋翻转”项的重要性。通过与密度泛函理论计算的比较,我们估计了这些耦合的强度。我们还将我们的理论应用于1T-TaSe2,它被发现是一个有希望的拓扑非平凡平坦带的候选者。我们的发现对平带的相关物理具有重要意义,包括在半填充时的自旋-自旋哈密顿量,确定为三角形晶格上的J-K-Γ- \(\Gamma ^{\prime}\)模型,以及在半填充时调整电子特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信