HemAtlas: A Multi-omics Hematopoiesis Database.

Zhixin Kang, Tongtong Zhu, Dong Zou, Mengyao Liu, Yifan Zhang, Lu Wang, Zhang Zhang, Feng Liu
{"title":"HemAtlas: A Multi-omics Hematopoiesis Database.","authors":"Zhixin Kang, Tongtong Zhu, Dong Zou, Mengyao Liu, Yifan Zhang, Lu Wang, Zhang Zhang, Feng Liu","doi":"10.1093/gpbjnl/qzaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in high-throughput omics technologies have facilitated a systematic exploration of crucial hematopoietic organs across diverse species. A thorough understanding of hematopoiesis in vivo and facilitation of generating functional hematopoietic stem and progenitor cells (HSPCs) in vitro necessitate a comprehensive hematopoietic cross-stage developmental landscape across species. To address this need, we developed HemAtlas, a platform designed for the systematic mapping of hematopoiesis both in vivo and in vitro. HemAtlas features detailed analyses of multi-omics datasets from humans, mice, zebrafish, and HSPC in vitro culture systems. Utilizing literature curation and data normalization, HemAtlas integrates various functional modules, allowing interactive exploration and visualization of any collected omics data based on user-specific interests. Moreover, by applying a systematic and uniform integration method, we constructed organ-wide hematopoietic references for each species with manually curated cell annotations, enabling a comprehensive decoding of cross-stage developmental hematopoiesis at the organ level. Of particular significance are three distinctive functions-single-cell cross-stage, cross-species, and cross-model analysis-that HemAtlas employs to elucidate the hematopoietic development in zebrafish, mice, and humans, and to offer guidance on the generation of HSPCs in vitro. Simultaneously, HemAtlas incorporates a comprehensive map of HSPC cross-stage development to reveal HSPC stage-specific properties. Taken together, HemAtlas serves as a crucial resource to advance our understanding of hematopoiesis and is available at https://ngdc.cncb.ac.cn/hematlas/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in high-throughput omics technologies have facilitated a systematic exploration of crucial hematopoietic organs across diverse species. A thorough understanding of hematopoiesis in vivo and facilitation of generating functional hematopoietic stem and progenitor cells (HSPCs) in vitro necessitate a comprehensive hematopoietic cross-stage developmental landscape across species. To address this need, we developed HemAtlas, a platform designed for the systematic mapping of hematopoiesis both in vivo and in vitro. HemAtlas features detailed analyses of multi-omics datasets from humans, mice, zebrafish, and HSPC in vitro culture systems. Utilizing literature curation and data normalization, HemAtlas integrates various functional modules, allowing interactive exploration and visualization of any collected omics data based on user-specific interests. Moreover, by applying a systematic and uniform integration method, we constructed organ-wide hematopoietic references for each species with manually curated cell annotations, enabling a comprehensive decoding of cross-stage developmental hematopoiesis at the organ level. Of particular significance are three distinctive functions-single-cell cross-stage, cross-species, and cross-model analysis-that HemAtlas employs to elucidate the hematopoietic development in zebrafish, mice, and humans, and to offer guidance on the generation of HSPCs in vitro. Simultaneously, HemAtlas incorporates a comprehensive map of HSPC cross-stage development to reveal HSPC stage-specific properties. Taken together, HemAtlas serves as a crucial resource to advance our understanding of hematopoiesis and is available at https://ngdc.cncb.ac.cn/hematlas/.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信