Potential of High-Intensity Focused Ultrasound in Enamel Remineralization.

B Shrestha, S M Rajan, M Saunders, A Fawzy
{"title":"Potential of High-Intensity Focused Ultrasound in Enamel Remineralization.","authors":"B Shrestha, S M Rajan, M Saunders, A Fawzy","doi":"10.1177/00220345251323869","DOIUrl":null,"url":null,"abstract":"<p><p>Remineralization is an essential interventional strategy for intercepting enamel white spot lesions (WSLs). Given the limitations of both natural and/or fluoride-mediated repair processes, there is a need to develop novel strategies for repairing enamel WSLs via a minimally invasive approach while restoring the unique ultrastructural integrity and functional properties. Inspired by the unique capability of high-intensity focused ultrasound (HIFU) in facilitating the crystallization process, we propose a novel strategy of employing HIFU for in vitro repair of WSLs through synergizing the crystallization process required for hydroxyapatite (HAP) formation from its precursor (calcium phosphate ion clusters; CPICs). Following CPIC formulation and characterization including the resultant amorphous calcium phosphate (ACP), the effect of HIFU on the ACP-to-HAP transition on the amorphous substrate was investigated using transmission electron microscopy and high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction (XRD). The results showed profound amorphous-to-crystalline phase transition, within 5- to 30-min HIFU exposure, whereas the long axis of the resultant HAP corresponded with the (002) plane, and a lattice spacing of 0.34 nm indicated a preferred <i>c</i>-axis growth direction consistent with the orientation of natural enamel crystallites. For enamel repair, artificial WSLs were created on enamel specimens and then subjected to CPICs, followed by HIFU exposure for 2.5, 5, or 10 min. Scanning electron and atomic force microscopies revealed the decreased surface roughness and the gradual obliteration in the WSL porous structure with continuous linear coaxial arrangement of HAP crystallites filling the prismatic/interprismatic gaps closely resembling sound enamel specifically with 5-min HIFU exposure. Enamel WSL ultrastructural repair was further confirmed from XRD and Raman spectral analyses with the associated regaining of mineral density and nanomechanical properties as reflected from micro-computed tomography (CT) and nanoindentation results, respectively. Micro-CT further validated the subsurface remineralization of WSLs with HIFU exposure. Within the same exposure parameters, HIFU exhibited a potent antibiofilm effect against <i>Streptococcus mutans</i>. This study introduced a new approach for remineralizing enamel WSLs through the potent synergy between HIFU and CPICs.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345251323869"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345251323869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remineralization is an essential interventional strategy for intercepting enamel white spot lesions (WSLs). Given the limitations of both natural and/or fluoride-mediated repair processes, there is a need to develop novel strategies for repairing enamel WSLs via a minimally invasive approach while restoring the unique ultrastructural integrity and functional properties. Inspired by the unique capability of high-intensity focused ultrasound (HIFU) in facilitating the crystallization process, we propose a novel strategy of employing HIFU for in vitro repair of WSLs through synergizing the crystallization process required for hydroxyapatite (HAP) formation from its precursor (calcium phosphate ion clusters; CPICs). Following CPIC formulation and characterization including the resultant amorphous calcium phosphate (ACP), the effect of HIFU on the ACP-to-HAP transition on the amorphous substrate was investigated using transmission electron microscopy and high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction (XRD). The results showed profound amorphous-to-crystalline phase transition, within 5- to 30-min HIFU exposure, whereas the long axis of the resultant HAP corresponded with the (002) plane, and a lattice spacing of 0.34 nm indicated a preferred c-axis growth direction consistent with the orientation of natural enamel crystallites. For enamel repair, artificial WSLs were created on enamel specimens and then subjected to CPICs, followed by HIFU exposure for 2.5, 5, or 10 min. Scanning electron and atomic force microscopies revealed the decreased surface roughness and the gradual obliteration in the WSL porous structure with continuous linear coaxial arrangement of HAP crystallites filling the prismatic/interprismatic gaps closely resembling sound enamel specifically with 5-min HIFU exposure. Enamel WSL ultrastructural repair was further confirmed from XRD and Raman spectral analyses with the associated regaining of mineral density and nanomechanical properties as reflected from micro-computed tomography (CT) and nanoindentation results, respectively. Micro-CT further validated the subsurface remineralization of WSLs with HIFU exposure. Within the same exposure parameters, HIFU exhibited a potent antibiofilm effect against Streptococcus mutans. This study introduced a new approach for remineralizing enamel WSLs through the potent synergy between HIFU and CPICs.

高强度聚焦超声在牙釉质再矿化中的潜力。
再矿化是阻断牙釉质白斑病变必不可少的介入治疗策略。鉴于天然修复和/或氟化物介导修复过程的局限性,需要开发新的策略,通过微创方法修复牙釉质WSLs,同时恢复其独特的超微结构完整性和功能特性。受高强度聚焦超声(HIFU)促进结晶过程的独特能力的启发,我们提出了一种利用HIFU通过协同羟基磷灰石(HAP)由其前体(磷酸钙离子簇)形成所需的结晶过程来体外修复WSLs的新策略;投资集团)。在CPIC的配方和表征(包括所得的无定形磷酸钙(ACP))之后,利用透射电子显微镜、高分辨率透射电子显微镜、选择区域电子衍射和x射线衍射(XRD)研究了HIFU对无定形衬底上ACP-to- hap转变的影响。结果表明,在5 ~ 30 min的HIFU照射下,HAP的长轴与(002)平面一致,晶格间距为0.34 nm,其c轴生长方向与天然牙釉质晶体的取向一致。为了修复牙釉质,在牙釉质标本上制备人工WSL,然后进行CPICs,然后HIFU暴露2.5,5或10分钟。扫描电子和原子力显微镜显示,在5分钟HIFU暴露时,WSL多孔结构表面粗糙度降低,并逐渐消失,HAP晶体连续线性同轴排列填充柱状/柱间间隙,与正常牙釉质非常相似。XRD和拉曼光谱分析进一步证实了牙釉质WSL的超微结构修复,显微计算机断层扫描(CT)和纳米压痕结果分别反映了牙釉质WSL的矿物密度和纳米力学性能。Micro-CT进一步验证了HIFU照射下wsl的地表下再矿化。在相同的暴露参数下,HIFU对变形链球菌表现出有效的抗生素膜作用。本研究通过HIFU和CPICs的有效协同作用,介绍了一种牙釉质WSLs再矿化的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信