Neurobiology-based cognitive biotypes using multi-scale intrinsic connectivity networks in psychotic disorders.

IF 3 Q2 PSYCHIATRY
Pablo Andrés-Camazón, Covadonga M Diaz-Caneja, Ram Ballem, Jiayu Chen, Vince D Calhoun, Armin Iraji
{"title":"Neurobiology-based cognitive biotypes using multi-scale intrinsic connectivity networks in psychotic disorders.","authors":"Pablo Andrés-Camazón, Covadonga M Diaz-Caneja, Ram Ballem, Jiayu Chen, Vince D Calhoun, Armin Iraji","doi":"10.1038/s41537-025-00593-2","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding neurobiology and developing effective interventions for cognitive dysfunction in psychotic disorders remain elusive. Insufficient knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. We aimed to identify subgroups of patients with psychosis and distinct patterns of functional brain alterations related to cognition (cognitive biotypes). We analyzed B-SNIP consortium data (2 270 participants including participants with psychotic disorders, relatives, and controls, 55% females). We used reference-informed independent component analysis with the standardized and fully automated framework NeuroMark and the 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified using multivariate joint analysis. K-means clustering identified patient subgroups based on these features. Two biotypes with different functional brain alteration patterns were identified. Relative to controls, biotype 1 exhibited hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks, hypoconnectivity in somatomotor-high cognitive processing networks, and better-preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets and in relatives. 76.56% of relatives were assigned to a psychosis biotype, of those, 70.12% were to the same biotype as their affected family members. These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Instead of traditional diagnosis, patient stratification based on these biotypes may help optimize future research and identify biological targets for the treatment of cognitive dysfunction in psychosis.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"45"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00593-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding neurobiology and developing effective interventions for cognitive dysfunction in psychotic disorders remain elusive. Insufficient knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. We aimed to identify subgroups of patients with psychosis and distinct patterns of functional brain alterations related to cognition (cognitive biotypes). We analyzed B-SNIP consortium data (2 270 participants including participants with psychotic disorders, relatives, and controls, 55% females). We used reference-informed independent component analysis with the standardized and fully automated framework NeuroMark and the 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified using multivariate joint analysis. K-means clustering identified patient subgroups based on these features. Two biotypes with different functional brain alteration patterns were identified. Relative to controls, biotype 1 exhibited hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks, hypoconnectivity in somatomotor-high cognitive processing networks, and better-preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets and in relatives. 76.56% of relatives were assigned to a psychosis biotype, of those, 70.12% were to the same biotype as their affected family members. These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Instead of traditional diagnosis, patient stratification based on these biotypes may help optimize future research and identify biological targets for the treatment of cognitive dysfunction in psychosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信