A simplified MyProstateScore2.0 for high-grade prostate cancer.

IF 2.2 4区 医学 Q3 ONCOLOGY
Cancer Biomarkers Pub Date : 2025-01-01 Epub Date: 2025-03-20 DOI:10.1177/18758592241308755
Tiffany M Tang, Yuping Zhang, Ana M Kenney, Cassie Xie, Lanbo Xiao, Javed Siddiqui, Sudhir Srivastava, Martin G Sanda, John T Wei, Ziding Feng, Jeffrey J Tosoian, Yingye Zheng, Arul M Chinnaiyan, Bin Yu
{"title":"A simplified MyProstateScore2.0 for high-grade prostate cancer.","authors":"Tiffany M Tang, Yuping Zhang, Ana M Kenney, Cassie Xie, Lanbo Xiao, Javed Siddiqui, Sudhir Srivastava, Martin G Sanda, John T Wei, Ziding Feng, Jeffrey J Tosoian, Yingye Zheng, Arul M Chinnaiyan, Bin Yu","doi":"10.1177/18758592241308755","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The limited diagnostic accuracy of prostate-specific antigen screening for prostate cancer (PCa) has prompted innovative solutions, such as the state-of-the-art 18-gene urine test for clinically-significant PCa (MyProstateScore2.0 (MPS2)). <b>Objective:</b> We aim to develop a non-invasive biomarker test, the simplified MPS2 (sMPS2), which achieves similar state-of-the-art accuracy as MPS2 for predicting high-grade PCa but requires substantially fewer genes than the 18-gene MPS2 to improve its accessibility for routine clinical care. <b>Methods:</b> We grounded the development of sMPS2 in the Predictability, Computability, and Stability (PCS) framework for veridical data science. Under this framework, we stress-tested the development of sMPS2 across various data preprocessing and modeling choices and developed a stability-driven PCS ranking procedure for selecting the most predictive and robust genes for use in sMPS2. <b>Results:</b> The final sMPS2 model consisted of 7 genes and achieved a 0.784 AUROC (95% confidence interval, 0.742-0.825) for predicting high-grade PCa on a blinded external validation cohort. This is only 2.3% lower than the 18-gene MPS2, which is similar in magnitude to the 1-2% in uncertainty induced by different data preprocessing choices. <b>Conclusions:</b> The 7-gene sMPS2 provides a unique opportunity to expand the reach and adoption of non-invasive PCa screening.</p>","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"42 1","pages":"18758592241308755"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/18758592241308755","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The limited diagnostic accuracy of prostate-specific antigen screening for prostate cancer (PCa) has prompted innovative solutions, such as the state-of-the-art 18-gene urine test for clinically-significant PCa (MyProstateScore2.0 (MPS2)). Objective: We aim to develop a non-invasive biomarker test, the simplified MPS2 (sMPS2), which achieves similar state-of-the-art accuracy as MPS2 for predicting high-grade PCa but requires substantially fewer genes than the 18-gene MPS2 to improve its accessibility for routine clinical care. Methods: We grounded the development of sMPS2 in the Predictability, Computability, and Stability (PCS) framework for veridical data science. Under this framework, we stress-tested the development of sMPS2 across various data preprocessing and modeling choices and developed a stability-driven PCS ranking procedure for selecting the most predictive and robust genes for use in sMPS2. Results: The final sMPS2 model consisted of 7 genes and achieved a 0.784 AUROC (95% confidence interval, 0.742-0.825) for predicting high-grade PCa on a blinded external validation cohort. This is only 2.3% lower than the 18-gene MPS2, which is similar in magnitude to the 1-2% in uncertainty induced by different data preprocessing choices. Conclusions: The 7-gene sMPS2 provides a unique opportunity to expand the reach and adoption of non-invasive PCa screening.

一个简化的myprostatcore2.0用于高级别前列腺癌。
背景:前列腺特异性抗原筛查前列腺癌(PCa)的诊断准确性有限,这促使了创新的解决方案,如最先进的18基因尿液检测临床显著的PCa (MyProstateScore2.0 (MPS2))。目的:我们的目标是开发一种非侵入性的生物标志物测试,简化的MPS2 (sMPS2),它在预测重度PCa方面具有与MPS2相似的最先进的准确性,但比18个基因的MPS2需要更少的基因,以提高其在常规临床护理中的可及性。方法:我们基于验证数据科学的可预测性、可计算性和稳定性(PCS)框架开发sMPS2。在此框架下,我们通过各种数据预处理和建模选择对sMPS2的开发进行了压力测试,并开发了一个稳定性驱动的PCS排序程序,用于选择最具预测性和鲁棒性的基因用于sMPS2。结果:最终的sMPS2模型由7个基因组成,在盲法外部验证队列中预测高度PCa的AUROC为0.784(95%可信区间0.742-0.825)。这只比18基因MPS2低2.3%,这与不同数据预处理选择引起的1-2%的不确定性在量级上相似。结论:7基因sMPS2为扩大非侵入性前列腺癌筛查的范围和采用提供了独特的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Biomarkers
Cancer Biomarkers ONCOLOGY-
CiteScore
5.20
自引率
3.20%
发文量
195
审稿时长
3 months
期刊介绍: Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion. The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信