Optimal control for stochastic neural oscillators.

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Faranak Rajabi, Frederic Gibou, Jeff Moehlis
{"title":"Optimal control for stochastic neural oscillators.","authors":"Faranak Rajabi, Frederic Gibou, Jeff Moehlis","doi":"10.1007/s00422-025-01007-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops an event-based, energy-efficient control strategy for desynchronizing coupled neuronal networks using optimal control theory. Inspired by phase resetting techniques in Parkinson's disease treatment, we incorporate stochasticity of the system's dynamics into deterministic models to address neural system intrinsic noise. We use an advanced computational solver for nonlinear stochastic partial differential equations to solve the stochastic Hamilton-Jacobi-Bellman equation via level set methods for a single neuron model; this allows us to find control inputs which drive the dynamics close to the system's phaseless set. When applied to coupled neuronal networks, these inputs achieve effective randomization of neuronal spike timing, leading to significant network desynchronization. Compared to its deterministic counterpart, our stochastic method can achieve considerable energy savings. The event-based control minimizes unnecessary charge transfer, potentially extending implanted stimulator battery life while maintaining robustness against variations in neuronal coupling strengths and network heterogeneities. These findings highlight the potential for developing energy-efficient neurostimulation techniques with implications for deep brain stimulation protocols. The presented computational framework could also be applied to other domains for which stochastic optimal control problems are prevalent.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"119 2-3","pages":"9"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-025-01007-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops an event-based, energy-efficient control strategy for desynchronizing coupled neuronal networks using optimal control theory. Inspired by phase resetting techniques in Parkinson's disease treatment, we incorporate stochasticity of the system's dynamics into deterministic models to address neural system intrinsic noise. We use an advanced computational solver for nonlinear stochastic partial differential equations to solve the stochastic Hamilton-Jacobi-Bellman equation via level set methods for a single neuron model; this allows us to find control inputs which drive the dynamics close to the system's phaseless set. When applied to coupled neuronal networks, these inputs achieve effective randomization of neuronal spike timing, leading to significant network desynchronization. Compared to its deterministic counterpart, our stochastic method can achieve considerable energy savings. The event-based control minimizes unnecessary charge transfer, potentially extending implanted stimulator battery life while maintaining robustness against variations in neuronal coupling strengths and network heterogeneities. These findings highlight the potential for developing energy-efficient neurostimulation techniques with implications for deep brain stimulation protocols. The presented computational framework could also be applied to other domains for which stochastic optimal control problems are prevalent.

随机神经振荡器的最优控制。
本文利用最优控制理论开发了一种基于事件的、节能的去同步耦合神经网络控制策略。受帕金森病治疗中的相位重置技术的启发,我们将系统动力学的随机性纳入确定性模型以解决神经系统固有噪声。我们使用先进的非线性随机偏微分方程计算解算器,通过水平集方法求解单神经元模型的随机Hamilton-Jacobi-Bellman方程;这使我们能够找到驱动动力学接近系统无相集的控制输入。当应用于耦合神经元网络时,这些输入实现了神经元尖峰时间的有效随机化,导致显著的网络去同步。与确定性方法相比,我们的随机方法可以实现相当大的节能。基于事件的控制最大限度地减少了不必要的电荷转移,潜在地延长了植入刺激器的电池寿命,同时保持了对神经元耦合强度和网络异质性变化的鲁棒性。这些发现强调了开发节能神经刺激技术的潜力,这对深部脑刺激方案具有重要意义。所提出的计算框架也可以应用于随机最优控制问题普遍存在的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信