Predictive Model of Acute Rectal Toxicity in Prostate Cancer Treated With Radiotherapy.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-03-01 Epub Date: 2025-03-19 DOI:10.1200/CCI-24-00252
Keyur D Shah, Beow Y Yeap, Hoyeon Lee, Zainab O Soetan, Maryam Moteabbed, Stacey Muise, Jessica Cowan, Kyla Remillard, Brenda Silvia, Nancy P Mendenhall, Edward Soffen, Mark V Mishra, Sophia C Kamran, David T Miyamoto, Harald Paganetti, Jason A Efstathiou, Ibrahim Chamseddine
{"title":"Predictive Model of Acute Rectal Toxicity in Prostate Cancer Treated With Radiotherapy.","authors":"Keyur D Shah, Beow Y Yeap, Hoyeon Lee, Zainab O Soetan, Maryam Moteabbed, Stacey Muise, Jessica Cowan, Kyla Remillard, Brenda Silvia, Nancy P Mendenhall, Edward Soffen, Mark V Mishra, Sophia C Kamran, David T Miyamoto, Harald Paganetti, Jason A Efstathiou, Ibrahim Chamseddine","doi":"10.1200/CCI-24-00252","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To aid personalized treatment selection, we developed a predictive model for acute rectal toxicity in patients with prostate cancer undergoing radiotherapy with photons and protons.</p><p><strong>Materials and methods: </strong>We analyzed a prospective multi-institutional cohort of 278 patients treated from 2012 to 2023 across 10 centers. Dosimetric and nondosimetric variables were collected, and key predictors were identified using purposeful feature selection. The cohort was split into discovery (n = 227) and validation (n = 51) data sets. The dose along the rectum surface was transformed into a two-dimensional surface, and dose-area histograms (DAHs) were quantified. A convolutional neural network (CNN) was developed to extract dosimetric features from the DAH and integrate them with nondosimetric predictors. Model performance was benchmarked against logistic regression (LR) using the AUC.</p><p><strong>Results: </strong>Key predictors included rectum length, race, age, and hydrogel spacer use. The CNN model demonstrated stability in the discovery data set (AUC = 0.81 ± 0.11) and outperformed LR in the validation data set (AUC = 0.81 <i>v</i> 0.54). Separate analysis of photon and proton subsets yielded consistent AUCs of 0.7 and 0.92, respectively. In the photon high-risk group, the model achieved 83% sensitivity, and in proton subsets, it achieved 100% sensitivity and specificity, indicating the potential to be used for treatment selection in these patients.</p><p><strong>Conclusion: </strong>Our novel approach effectively predicts rectal toxicity across photon and proton subsets, demonstrating the utility of integrating dosimetric and nondosimetric features. The model's strong performance across modalities suggests potential for guiding treatment decisions, warranting prospective validation.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400252"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To aid personalized treatment selection, we developed a predictive model for acute rectal toxicity in patients with prostate cancer undergoing radiotherapy with photons and protons.

Materials and methods: We analyzed a prospective multi-institutional cohort of 278 patients treated from 2012 to 2023 across 10 centers. Dosimetric and nondosimetric variables were collected, and key predictors were identified using purposeful feature selection. The cohort was split into discovery (n = 227) and validation (n = 51) data sets. The dose along the rectum surface was transformed into a two-dimensional surface, and dose-area histograms (DAHs) were quantified. A convolutional neural network (CNN) was developed to extract dosimetric features from the DAH and integrate them with nondosimetric predictors. Model performance was benchmarked against logistic regression (LR) using the AUC.

Results: Key predictors included rectum length, race, age, and hydrogel spacer use. The CNN model demonstrated stability in the discovery data set (AUC = 0.81 ± 0.11) and outperformed LR in the validation data set (AUC = 0.81 v 0.54). Separate analysis of photon and proton subsets yielded consistent AUCs of 0.7 and 0.92, respectively. In the photon high-risk group, the model achieved 83% sensitivity, and in proton subsets, it achieved 100% sensitivity and specificity, indicating the potential to be used for treatment selection in these patients.

Conclusion: Our novel approach effectively predicts rectal toxicity across photon and proton subsets, demonstrating the utility of integrating dosimetric and nondosimetric features. The model's strong performance across modalities suggests potential for guiding treatment decisions, warranting prospective validation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信