Predictive Model of Acute Rectal Toxicity in Prostate Cancer Treated With Radiotherapy.

IF 2.8 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-03-01 Epub Date: 2025-03-19 DOI:10.1200/CCI-24-00252
Keyur D Shah, Beow Y Yeap, Hoyeon Lee, Zainab O Soetan, Maryam Moteabbed, Stacey Muise, Jessica Cowan, Kyla Remillard, Brenda Silvia, Nancy P Mendenhall, Edward Soffen, Mark V Mishra, Sophia C Kamran, David T Miyamoto, Harald Paganetti, Jason A Efstathiou, Ibrahim Chamseddine
{"title":"Predictive Model of Acute Rectal Toxicity in Prostate Cancer Treated With Radiotherapy.","authors":"Keyur D Shah, Beow Y Yeap, Hoyeon Lee, Zainab O Soetan, Maryam Moteabbed, Stacey Muise, Jessica Cowan, Kyla Remillard, Brenda Silvia, Nancy P Mendenhall, Edward Soffen, Mark V Mishra, Sophia C Kamran, David T Miyamoto, Harald Paganetti, Jason A Efstathiou, Ibrahim Chamseddine","doi":"10.1200/CCI-24-00252","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To aid personalized treatment selection, we developed a predictive model for acute rectal toxicity in patients with prostate cancer undergoing radiotherapy with photons and protons.</p><p><strong>Materials and methods: </strong>We analyzed a prospective multi-institutional cohort of 278 patients treated from 2012 to 2023 across 10 centers. Dosimetric and nondosimetric variables were collected, and key predictors were identified using purposeful feature selection. The cohort was split into discovery (n = 227) and validation (n = 51) data sets. The dose along the rectum surface was transformed into a two-dimensional surface, and dose-area histograms (DAHs) were quantified. A convolutional neural network (CNN) was developed to extract dosimetric features from the DAH and integrate them with nondosimetric predictors. Model performance was benchmarked against logistic regression (LR) using the AUC.</p><p><strong>Results: </strong>Key predictors included rectum length, race, age, and hydrogel spacer use. The CNN model demonstrated stability in the discovery data set (AUC = 0.81 ± 0.11) and outperformed LR in the validation data set (AUC = 0.81 <i>v</i> 0.54). Separate analysis of photon and proton subsets yielded consistent AUCs of 0.7 and 0.92, respectively. In the photon high-risk group, the model achieved 83% sensitivity, and in proton subsets, it achieved 100% sensitivity and specificity, indicating the potential to be used for treatment selection in these patients.</p><p><strong>Conclusion: </strong>Our novel approach effectively predicts rectal toxicity across photon and proton subsets, demonstrating the utility of integrating dosimetric and nondosimetric features. The model's strong performance across modalities suggests potential for guiding treatment decisions, warranting prospective validation.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400252"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To aid personalized treatment selection, we developed a predictive model for acute rectal toxicity in patients with prostate cancer undergoing radiotherapy with photons and protons.

Materials and methods: We analyzed a prospective multi-institutional cohort of 278 patients treated from 2012 to 2023 across 10 centers. Dosimetric and nondosimetric variables were collected, and key predictors were identified using purposeful feature selection. The cohort was split into discovery (n = 227) and validation (n = 51) data sets. The dose along the rectum surface was transformed into a two-dimensional surface, and dose-area histograms (DAHs) were quantified. A convolutional neural network (CNN) was developed to extract dosimetric features from the DAH and integrate them with nondosimetric predictors. Model performance was benchmarked against logistic regression (LR) using the AUC.

Results: Key predictors included rectum length, race, age, and hydrogel spacer use. The CNN model demonstrated stability in the discovery data set (AUC = 0.81 ± 0.11) and outperformed LR in the validation data set (AUC = 0.81 v 0.54). Separate analysis of photon and proton subsets yielded consistent AUCs of 0.7 and 0.92, respectively. In the photon high-risk group, the model achieved 83% sensitivity, and in proton subsets, it achieved 100% sensitivity and specificity, indicating the potential to be used for treatment selection in these patients.

Conclusion: Our novel approach effectively predicts rectal toxicity across photon and proton subsets, demonstrating the utility of integrating dosimetric and nondosimetric features. The model's strong performance across modalities suggests potential for guiding treatment decisions, warranting prospective validation.

前列腺癌放射治疗急性直肠毒性的预测模型。
目的:为了帮助个性化的治疗选择,我们建立了一个预测前列腺癌患者接受光子和质子放射治疗急性直肠毒性的模型。材料和方法:我们分析了2012年至2023年在10个中心接受治疗的278名患者的前瞻性多机构队列。收集剂量学和非剂量学变量,并使用有目的的特征选择确定关键预测因子。该队列被分为发现(n = 227)和验证(n = 51)数据集。将直肠表面的剂量转化为二维表面,量化剂量面积直方图(DAHs)。利用卷积神经网络(CNN)从DAH中提取剂量学特征,并将其与非剂量学预测因子相结合。使用AUC对逻辑回归(LR)对模型性能进行基准测试。结果:主要预测因素包括直肠长度、种族、年龄和水凝胶间隔剂的使用。CNN模型在发现数据集中表现出稳定性(AUC = 0.81±0.11),在验证数据集中表现优于LR (AUC = 0.81 v 0.54)。单独分析光子和质子亚群得到一致的auc,分别为0.7和0.92。在光子高危组中,该模型的灵敏度达到83%,在质子亚群中,该模型的灵敏度和特异性达到100%,这表明该模型有可能用于这些患者的治疗选择。结论:我们的新方法有效地预测了通过光子和质子亚群的直肠毒性,证明了综合剂量学和非剂量学特征的实用性。该模型跨模式的强大性能表明指导治疗决策的潜力,保证前瞻性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信