Crafted experiments to evaluate feature selection methods for single-cell RNA-seq data.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-19 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf023
Siyao Liu, David L Corcoran, Susana Garcia-Recio, James S Marron, Charles M Perou
{"title":"Crafted experiments to evaluate feature selection methods for single-cell RNA-seq data.","authors":"Siyao Liu, David L Corcoran, Susana Garcia-Recio, James S Marron, Charles M Perou","doi":"10.1093/nargab/lqaf023","DOIUrl":null,"url":null,"abstract":"<p><p>While numerous methods have been developed for analyzing scRNA-seq data, benchmarking various methods remains challenging. There is a lack of ground truth datasets for evaluating novel gene selection and/or clustering methods. We propose the use of <i>crafted experiments</i>, a new approach based upon perturbing signals in a real dataset for comparing analysis methods. We demonstrate the effectiveness of crafted experiments for evaluating new univariate distribution-oriented suite of feature selection methods, called GOF. We show GOF selects features that robustly identify crafted features and perform well on real non-crafted data sets. Using varying ways of crafting, we also show the context in which each GOF method performs the best. GOF is implemented as an open-source R package and freely available under GPL-2 license at https://github.com/siyao-liu/GOF. Source code, including all functions for constructing crafted experiments and benchmarking feature selection methods, are publicly available at https://github.com/siyao-liu/CraftedExperiment.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf023"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

While numerous methods have been developed for analyzing scRNA-seq data, benchmarking various methods remains challenging. There is a lack of ground truth datasets for evaluating novel gene selection and/or clustering methods. We propose the use of crafted experiments, a new approach based upon perturbing signals in a real dataset for comparing analysis methods. We demonstrate the effectiveness of crafted experiments for evaluating new univariate distribution-oriented suite of feature selection methods, called GOF. We show GOF selects features that robustly identify crafted features and perform well on real non-crafted data sets. Using varying ways of crafting, we also show the context in which each GOF method performs the best. GOF is implemented as an open-source R package and freely available under GPL-2 license at https://github.com/siyao-liu/GOF. Source code, including all functions for constructing crafted experiments and benchmarking feature selection methods, are publicly available at https://github.com/siyao-liu/CraftedExperiment.

精心设计的实验来评估单细胞RNA-seq数据的特征选择方法。
虽然已经开发了许多方法来分析scRNA-seq数据,但对各种方法进行基准测试仍然具有挑战性。缺乏评估新的基因选择和/或聚类方法的真实数据集。我们建议使用精心设计的实验,这是一种基于真实数据集中的扰动信号的新方法,用于比较分析方法。我们展示了精心设计的实验的有效性,用于评估新的单变量面向分布的特征选择方法套件,称为GOF。我们展示了GOF选择的特征鲁棒地识别了精心设计的特征,并在真实的非精心设计的数据集上表现良好。使用不同的制作方法,我们还展示了每种GOF方法表现最佳的上下文。GOF是作为开源R包实现的,在GPL-2许可下可在https://github.com/siyao-liu/GOF免费获得。源代码,包括用于构建精心设计的实验和对特征选择方法进行基准测试的所有函数,可在https://github.com/siyao-liu/CraftedExperiment上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信