A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-19 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf022
Linting Wang, Xiaojie Li, Jianhui Shi, Lei M Li
{"title":"A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle.","authors":"Linting Wang, Xiaojie Li, Jianhui Shi, Lei M Li","doi":"10.1093/nargab/lqaf022","DOIUrl":null,"url":null,"abstract":"<p><p>The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf022"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.

多组学的四特征相模型揭示了酵母代谢周期的新见解。
酵母代谢循环(YMC)以转录物和代谢物的循环振荡为特征,是研究生物节律的理想模型。虽然在YMC上有多个组学数据集,但是这个过程缺少一个统一的景观。为了解决这一差距,我们通过奇异值分解(SVDs)整合了多组学数据集,将每个数据集分层为两个层次,并定义了四个特征阶段:主要1A/1B和次要2A/2B。特征相以1B、2A、1A和2B的顺序循环发生,表明了诱导和抑制的相互作用:一个特征相在不同的水平上诱导下一个特征相,同时在相同的水平上抑制另一个特征相。每个特征相都有不同的分子特征。新的发现包括在特征相2A/2B中产生和消耗甘油,以及在2A/2B之间对核糖体生物发生和有氧呼吸的相反调节。此外,我们估计了多组学的时间:组蛋白修饰H3K9ac/H3K18ac在约3分钟内发生在mRNA转录之前,随后在约13分钟内发生代谢组学变化。大约38分钟后发生向下一个特征期的过渡。从表观基因组H3K9ac/H3K18ac到代谢组,特征熵增加。这项工作提供了一个适用于多组学数据集成的计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信