Using Deep Learning to Perform Automatic Quantitative Measurement of Masseter and Tongue Muscles in Persons With Dementia: Cross-Sectional Study.

IF 5 Q1 GERIATRICS & GERONTOLOGY
JMIR Aging Pub Date : 2025-03-19 DOI:10.2196/63686
Mahdi Imani, Miguel G Borda, Sara Vogrin, Erik Meijering, Dag Aarsland, Gustavo Duque
{"title":"Using Deep Learning to Perform Automatic Quantitative Measurement of Masseter and Tongue Muscles in Persons With Dementia: Cross-Sectional Study.","authors":"Mahdi Imani, Miguel G Borda, Sara Vogrin, Erik Meijering, Dag Aarsland, Gustavo Duque","doi":"10.2196/63686","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia (loss of muscle mass and strength) increases adverse outcomes risk and contributes to cognitive decline in older adults. Accurate methods to quantify muscle mass and predict adverse outcomes, particularly in older persons with dementia, are still lacking.</p><p><strong>Objective: </strong>This study's main objective was to assess the feasibility of using deep learning techniques for segmentation and quantification of musculoskeletal tissues in magnetic resonance imaging (MRI) scans of the head in patients with neurocognitive disorders. This study aimed to pave the way for using automated techniques for opportunistic detection of sarcopenia in patients with neurocognitive disorder.</p><p><strong>Methods: </strong>In a cross-sectional analysis of 53 participants, we used 7 U-Net-like deep learning models to segment 5 different tissues in head MRI images and used the Dice similarity coefficient and average symmetric surface distance as main assessment techniques to compare results. We also analyzed the relationship between BMI and muscle and fat volumes.</p><p><strong>Results: </strong>Our framework accurately quantified masseter and subcutaneous fat on the left and right sides of the head and tongue muscle (mean Dice similarity coefficient 92.4%). A significant correlation exists between the area and volume of tongue muscle, left masseter muscle, and BMI.</p><p><strong>Conclusions: </strong>Our study demonstrates the successful application of a deep learning model to quantify muscle volumes in head MRI in patients with neurocognitive disorders. This is a promising first step toward clinically applicable artificial intelligence and deep learning methods for estimating masseter and tongue muscle and predicting adverse outcomes in this population.</p>","PeriodicalId":36245,"journal":{"name":"JMIR Aging","volume":"8 ","pages":"e63686"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/63686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sarcopenia (loss of muscle mass and strength) increases adverse outcomes risk and contributes to cognitive decline in older adults. Accurate methods to quantify muscle mass and predict adverse outcomes, particularly in older persons with dementia, are still lacking.

Objective: This study's main objective was to assess the feasibility of using deep learning techniques for segmentation and quantification of musculoskeletal tissues in magnetic resonance imaging (MRI) scans of the head in patients with neurocognitive disorders. This study aimed to pave the way for using automated techniques for opportunistic detection of sarcopenia in patients with neurocognitive disorder.

Methods: In a cross-sectional analysis of 53 participants, we used 7 U-Net-like deep learning models to segment 5 different tissues in head MRI images and used the Dice similarity coefficient and average symmetric surface distance as main assessment techniques to compare results. We also analyzed the relationship between BMI and muscle and fat volumes.

Results: Our framework accurately quantified masseter and subcutaneous fat on the left and right sides of the head and tongue muscle (mean Dice similarity coefficient 92.4%). A significant correlation exists between the area and volume of tongue muscle, left masseter muscle, and BMI.

Conclusions: Our study demonstrates the successful application of a deep learning model to quantify muscle volumes in head MRI in patients with neurocognitive disorders. This is a promising first step toward clinically applicable artificial intelligence and deep learning methods for estimating masseter and tongue muscle and predicting adverse outcomes in this population.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Aging
JMIR Aging Social Sciences-Health (social science)
CiteScore
6.50
自引率
4.10%
发文量
71
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信