Sarah A R Schrock, Jason C Walsman, Joseph DeMarchi, Emily H LeSage, Michel E B Ohmer, Louise A Rollins-Smith, Cheryl J Briggs, Corinne L Richards-Zawacki, Douglas C Woodhams, Roland A Knapp, Thomas C Smith, Célio F B Haddad, C Guilherme Becker, Pieter T J Johnson, Mark Q Wilber
{"title":"Do fungi look like macroparasites? Quantifying the patterns and mechanisms of aggregation for host-fungal parasite relationships.","authors":"Sarah A R Schrock, Jason C Walsman, Joseph DeMarchi, Emily H LeSage, Michel E B Ohmer, Louise A Rollins-Smith, Cheryl J Briggs, Corinne L Richards-Zawacki, Douglas C Woodhams, Roland A Knapp, Thomas C Smith, Célio F B Haddad, C Guilherme Becker, Pieter T J Johnson, Mark Q Wilber","doi":"10.1098/rspb.2024.2013","DOIUrl":null,"url":null,"abstract":"<p><p>Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare with macroparasites and if they reflect biological processes. To begin addressing these gaps, we characterized aggregation of the fungal pathogen <i>Batrachochytrium dendrobatidis</i> (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power law, we found Bd intensity distributions were more aggregated than many macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase (i.e. invasion, post-invasion and enzootic), and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and contains signatures of potential biological processes of amphibian-Bd systems. Our work can inform future modelling approaches and be extended to other fungal pathogens to elucidate host-fungal interactions and unite host-fungal dynamics under a common theoretical framework.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2043","pages":"20242013"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare with macroparasites and if they reflect biological processes. To begin addressing these gaps, we characterized aggregation of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power law, we found Bd intensity distributions were more aggregated than many macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase (i.e. invasion, post-invasion and enzootic), and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and contains signatures of potential biological processes of amphibian-Bd systems. Our work can inform future modelling approaches and be extended to other fungal pathogens to elucidate host-fungal interactions and unite host-fungal dynamics under a common theoretical framework.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.