{"title":"Multi-level societies: different tasks at different social levels.","authors":"Ettore Camerlenghi, Danai Papageorgiou","doi":"10.1098/rstb.2023.0274","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-level vertebrate societies, characterized by nested social units, allow individuals to perform a wide range of tasks in cooperation with others beyond their core social unit. In these societies, individuals can selectively interact with specific partners from higher social levels to cooperatively perform distinct tasks. Alternatively, social units of the same level can merge to form higher-level associations, enabling individuals to benefit from large social units without always maintaining a large core social unit. The reasons why multi-level sociality evolves in some systems but not in others are not well understood. We propose that this is partly due to a lack of data, especially regarding the fitness consequences of cooperation at different social levels. First, we argue that in multi-level societies individual fitness benefits should increase when performing tasks in cooperation with associates from higher social levels. Second, as more multi-level societies are documented across taxa, we will continue to find similar cooperative tasks performed at each of the different social levels. By providing compelling species examples, from dolphins to fairy-wrens, we underscore that despite the diversity of multi-level social organization, convergence in task performance across social levels will become clearer as more data accumulates. Finally, we highlight the role of multi-level sociality in buffering fluctuating environmental conditions by enabling flexible social associations to emerge according to need.This article is part of the theme issue 'Division of labour as key driver of social evolution'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1922","pages":"20230274"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0274","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-level vertebrate societies, characterized by nested social units, allow individuals to perform a wide range of tasks in cooperation with others beyond their core social unit. In these societies, individuals can selectively interact with specific partners from higher social levels to cooperatively perform distinct tasks. Alternatively, social units of the same level can merge to form higher-level associations, enabling individuals to benefit from large social units without always maintaining a large core social unit. The reasons why multi-level sociality evolves in some systems but not in others are not well understood. We propose that this is partly due to a lack of data, especially regarding the fitness consequences of cooperation at different social levels. First, we argue that in multi-level societies individual fitness benefits should increase when performing tasks in cooperation with associates from higher social levels. Second, as more multi-level societies are documented across taxa, we will continue to find similar cooperative tasks performed at each of the different social levels. By providing compelling species examples, from dolphins to fairy-wrens, we underscore that despite the diversity of multi-level social organization, convergence in task performance across social levels will become clearer as more data accumulates. Finally, we highlight the role of multi-level sociality in buffering fluctuating environmental conditions by enabling flexible social associations to emerge according to need.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.