Preoperative Sleep Deprivation Exacerbates Anesthesia/Surgery-induced Abnormal GABAergic Neurotransmission and Neuronal Damage in the Hippocampus in Aged Mice.
{"title":"Preoperative Sleep Deprivation Exacerbates Anesthesia/Surgery-induced Abnormal GABAergic Neurotransmission and Neuronal Damage in the Hippocampus in Aged Mice.","authors":"Yun Li, Siwen Long, Jiafeng Yu, Jingyu Feng, Shuqi Meng, Yize Li, Lina Zhao, Yonghao Yu","doi":"10.1007/s12035-025-04851-3","DOIUrl":null,"url":null,"abstract":"<p><p>Older adults with anesthesia and surgery often suffer from postoperative cognitive dysfunction (POCD), which puts a heavy burden on rehabilitation. Preoperative sleep disorder, a common phenomenon in elderly anesthesia patients, is closely associated with POCD, but the underlying mechanism is still not fully understood. Hippocampal gamma-aminobutyric acid (GABA)ergic neurotransmission has been reported to play an important role in sleep disorder and cognitive impairment. The aim of this study was to elucidate the effect of preoperative acute sleep deprivation (SD) on anesthesia/surgery-induced POCD and the potential mechanism of hippocampal GABAergic neurotransmission. In the aged (18-20-month-old) male mice, we used a rotating rod to deprive sleep for 24 h and induced a POCD model using sevoflurane exposure combined with laparotomy exploration. A sequential set of behavioral tests, including open field test (OFT), Y-maze, and novel object recognition (NOR), was conducted to assess cognitive performances. In vivo magnetic resonance imaging (MRI) technique was used to observe hippocampal axonal microstructural changes. The levels of GABAergic neurotransmitter markers glutamic acid decarboxylase (GAD) 67, vesicular GABA transporter (VGAT), GABA transporter (GAT)-1, and GABA in the hippocampus were detected with enzyme-linked immunosorbent assay (ELISA). The reactivity of GABAergic neurons and neuronal damage in different subregions of the hippocampus were observed by immunofluorescence and Nissl staining, respectively. Compared the anesthesia/surgery (A/S) mice, 24-h SD combined with A/S induced shorter stay time in the central area of the open field, less the percent of novel arm preference in the Y maze, and lower recognition index in the NOR, as well as significantly enhanced hippocampal GABAergic neurotransmission, decreased hippocampal axonal integrity and density, and increased GAD67 reactivity and reduced the number of neurons in hippocampal CA1. Preoperative 24-h SD exacerbated anesthesia/surgery-induced POCD in aged mice, with the cumulative effect of abnormal GABAergic neurotransmission and neuronal damage in the hippocampus.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9385-9398"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04851-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Older adults with anesthesia and surgery often suffer from postoperative cognitive dysfunction (POCD), which puts a heavy burden on rehabilitation. Preoperative sleep disorder, a common phenomenon in elderly anesthesia patients, is closely associated with POCD, but the underlying mechanism is still not fully understood. Hippocampal gamma-aminobutyric acid (GABA)ergic neurotransmission has been reported to play an important role in sleep disorder and cognitive impairment. The aim of this study was to elucidate the effect of preoperative acute sleep deprivation (SD) on anesthesia/surgery-induced POCD and the potential mechanism of hippocampal GABAergic neurotransmission. In the aged (18-20-month-old) male mice, we used a rotating rod to deprive sleep for 24 h and induced a POCD model using sevoflurane exposure combined with laparotomy exploration. A sequential set of behavioral tests, including open field test (OFT), Y-maze, and novel object recognition (NOR), was conducted to assess cognitive performances. In vivo magnetic resonance imaging (MRI) technique was used to observe hippocampal axonal microstructural changes. The levels of GABAergic neurotransmitter markers glutamic acid decarboxylase (GAD) 67, vesicular GABA transporter (VGAT), GABA transporter (GAT)-1, and GABA in the hippocampus were detected with enzyme-linked immunosorbent assay (ELISA). The reactivity of GABAergic neurons and neuronal damage in different subregions of the hippocampus were observed by immunofluorescence and Nissl staining, respectively. Compared the anesthesia/surgery (A/S) mice, 24-h SD combined with A/S induced shorter stay time in the central area of the open field, less the percent of novel arm preference in the Y maze, and lower recognition index in the NOR, as well as significantly enhanced hippocampal GABAergic neurotransmission, decreased hippocampal axonal integrity and density, and increased GAD67 reactivity and reduced the number of neurons in hippocampal CA1. Preoperative 24-h SD exacerbated anesthesia/surgery-induced POCD in aged mice, with the cumulative effect of abnormal GABAergic neurotransmission and neuronal damage in the hippocampus.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.