Identification of NETs-related genes as diagnostic biomarkers in ischemic stroke using RNA sequencing and single-cell analysis.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rongxing Qin, Wei Xu, Qingchun Qin, Xiaojun Liang, Xinyu Lai, Minshan Xie, Li Chen
{"title":"Identification of NETs-related genes as diagnostic biomarkers in ischemic stroke using RNA sequencing and single-cell analysis.","authors":"Rongxing Qin, Wei Xu, Qingchun Qin, Xiaojun Liang, Xinyu Lai, Minshan Xie, Li Chen","doi":"10.1007/s00335-025-10117-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophil extracellular traps (NETs) are increasingly recognized for their involvement in ischemic stroke (IS), yet their precise contribution to IS outcomes is not fully understood. This study aims to elucidate the role of NETs in IS progression and identify potential biomarkers and therapeutic targets. In this study, mice were subjected to middle cerebral artery occlusion (MCAO). RNA sequencing was conducted on brain tissue samples to identify differentially expressed genes (DEGs) using the \"limma\" package. The diagnostic potential of these biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Additionally, single-cell RNA sequencing data were analyzed with the Seurat package to further investigate the cellular dynamics. We identified DEGs, and NETs-related genes associated with IS progression. Specifically, Ceacam3, Tnf, Selp, and Fcgr4 were found to be upregulated in MCAO samples, exhibiting diagnostic value as biomarkers for IS. Immune infiltration analysis indicated associations between these genes and various immune cell types. Gene Set Enrichment Analysis (GSEA) revealed their involvement in IS-related pathways, including ferroptosis, IL-17 signaling, leukocyte transendothelial migration, necroptosis, and NETs formation. Single-cell data confirmed the expression of Tnf, Selp, and Fcgr4 in neutrophils. CellChat analysis uncovered key cell-cell interactions in IS, emphasizing the role of neutrophils in communicating with microglia and T cells via the JAM pathway, with Thbs1 and Cd47 as key mediators. The findings provide insights into the cellular and molecular mechanisms underlying IS and may pave the way for novel therapeutic strategies targeting NETs in IS patients.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10117-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophil extracellular traps (NETs) are increasingly recognized for their involvement in ischemic stroke (IS), yet their precise contribution to IS outcomes is not fully understood. This study aims to elucidate the role of NETs in IS progression and identify potential biomarkers and therapeutic targets. In this study, mice were subjected to middle cerebral artery occlusion (MCAO). RNA sequencing was conducted on brain tissue samples to identify differentially expressed genes (DEGs) using the "limma" package. The diagnostic potential of these biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Additionally, single-cell RNA sequencing data were analyzed with the Seurat package to further investigate the cellular dynamics. We identified DEGs, and NETs-related genes associated with IS progression. Specifically, Ceacam3, Tnf, Selp, and Fcgr4 were found to be upregulated in MCAO samples, exhibiting diagnostic value as biomarkers for IS. Immune infiltration analysis indicated associations between these genes and various immune cell types. Gene Set Enrichment Analysis (GSEA) revealed their involvement in IS-related pathways, including ferroptosis, IL-17 signaling, leukocyte transendothelial migration, necroptosis, and NETs formation. Single-cell data confirmed the expression of Tnf, Selp, and Fcgr4 in neutrophils. CellChat analysis uncovered key cell-cell interactions in IS, emphasizing the role of neutrophils in communicating with microglia and T cells via the JAM pathway, with Thbs1 and Cd47 as key mediators. The findings provide insights into the cellular and molecular mechanisms underlying IS and may pave the way for novel therapeutic strategies targeting NETs in IS patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信