Development of a Tumor-Specific Multivalent CD40 Agonist Antibody FAPxCD40 for Cancer Therapy: Balancing Efficacy and Toxicity.

IF 5.3 2区 医学 Q1 ONCOLOGY
Simeng Chen, Yuan Lin, Dan Li, Xiaoru Zhou, Xing Sun, Changyong Yang, Cheng Liao
{"title":"Development of a Tumor-Specific Multivalent CD40 Agonist Antibody FAPxCD40 for Cancer Therapy: Balancing Efficacy and Toxicity.","authors":"Simeng Chen, Yuan Lin, Dan Li, Xiaoru Zhou, Xing Sun, Changyong Yang, Cheng Liao","doi":"10.1158/1535-7163.MCT-24-0717","DOIUrl":null,"url":null,"abstract":"<p><p>CD40 agonist antibodies are reported to augment tumor antigen presentation and have shown potential anti-tumor efficacy in clinical trials. Nevertheless, the limited efficacy and on-target, off-tumor toxicity restrict the further development of these antibodies. We hypothesize that the toxicity could be overcome by activating CD40 specifically through tumor-specific antigens. Additionally, limited efficacy can be improved through the strategic construction of CD40 bispecific antibodies (bsAbs) to refine the degree of CD40 clustering. Therefore, we developed anti-FAPxCD40 bsAbs with varying valences of anti-CD40 moieties, including bivalent FAPxCD40-2, tetravalent FAPxCD40-4, and hexavalent FAPxCD40-6. The tetravalent design of FAPxCD40-4 led to efficient activation of antigen-presenting cells and T cell priming in the presence of FAP. The antitumor activity and toxicity of FAPxCD40-4 were tested in the CD40 humanized mFAP-MC38 xenograft model. Compared to non-tumor-targeting CD40 agonist or bivalent bispecific antibodies, FAPxCD40-4 displayed potent anti-tumor activity and negligible toxicity at low doses, indicating an ideal therapeutic window. Our results demonstrated that the valences of the anti-CD40 moieties in bsAbs can be modulated to optimize CD40 activation and enlarge the therapeutic window of this type of molecules.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0717","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CD40 agonist antibodies are reported to augment tumor antigen presentation and have shown potential anti-tumor efficacy in clinical trials. Nevertheless, the limited efficacy and on-target, off-tumor toxicity restrict the further development of these antibodies. We hypothesize that the toxicity could be overcome by activating CD40 specifically through tumor-specific antigens. Additionally, limited efficacy can be improved through the strategic construction of CD40 bispecific antibodies (bsAbs) to refine the degree of CD40 clustering. Therefore, we developed anti-FAPxCD40 bsAbs with varying valences of anti-CD40 moieties, including bivalent FAPxCD40-2, tetravalent FAPxCD40-4, and hexavalent FAPxCD40-6. The tetravalent design of FAPxCD40-4 led to efficient activation of antigen-presenting cells and T cell priming in the presence of FAP. The antitumor activity and toxicity of FAPxCD40-4 were tested in the CD40 humanized mFAP-MC38 xenograft model. Compared to non-tumor-targeting CD40 agonist or bivalent bispecific antibodies, FAPxCD40-4 displayed potent anti-tumor activity and negligible toxicity at low doses, indicating an ideal therapeutic window. Our results demonstrated that the valences of the anti-CD40 moieties in bsAbs can be modulated to optimize CD40 activation and enlarge the therapeutic window of this type of molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信