Matt G Hall, Matt Cashmore, Hyo-Min Cho, Bernd Ittermann, Kathryn E Keenan, Christoph Kolbitsch, Changwoo Lee, Chengwei Li, Asante Ntata, Katie Obee, Zhang Pu, Stephen E Russek, Karl F Stupic, Lukas Winter, Luca Zilberti, Michael Steckner
{"title":"Metrology for MRI: the field you've never heard of.","authors":"Matt G Hall, Matt Cashmore, Hyo-Min Cho, Bernd Ittermann, Kathryn E Keenan, Christoph Kolbitsch, Changwoo Lee, Chengwei Li, Asante Ntata, Katie Obee, Zhang Pu, Stephen E Russek, Karl F Stupic, Lukas Winter, Luca Zilberti, Michael Steckner","doi":"10.1007/s10334-025-01238-2","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative MRI has been an active area of research for decades and has produced a huge range of approaches with enormous potential for patient benefit. In many cases, however, there are challenges with reproducibility which have hampered clinical translation. Quantitative MRI is a form of measurement and like any other form of measurement it requires a supporting metrological framework to be fully consistent and compatible with the international system of units. This means not just expressing results in terms of seconds, meters, etc., but demonstrating consistency to their internationally recognized definitions. Such a framework for MRI is not yet complete, but a considerable amount of work has been done internationally towards building one. This article describes the current state of the art for MRI metrology, including a detailed description of metrological principles and how they are relevant to fully quantitative MRI. It also undertakes a gap analysis of where we are versus where we need to be to support reproducibility in MRI. It focusses particularly on the role and activities of national measurement institutes across the globe, illustrating the genuinely international and collaborative nature of the field.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01238-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative MRI has been an active area of research for decades and has produced a huge range of approaches with enormous potential for patient benefit. In many cases, however, there are challenges with reproducibility which have hampered clinical translation. Quantitative MRI is a form of measurement and like any other form of measurement it requires a supporting metrological framework to be fully consistent and compatible with the international system of units. This means not just expressing results in terms of seconds, meters, etc., but demonstrating consistency to their internationally recognized definitions. Such a framework for MRI is not yet complete, but a considerable amount of work has been done internationally towards building one. This article describes the current state of the art for MRI metrology, including a detailed description of metrological principles and how they are relevant to fully quantitative MRI. It also undertakes a gap analysis of where we are versus where we need to be to support reproducibility in MRI. It focusses particularly on the role and activities of national measurement institutes across the globe, illustrating the genuinely international and collaborative nature of the field.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.