Yuan He, Fengyun Zhang, Kaimiao Hu, Changming Sun, Jie Geng, Ning Ren, Ran Su
{"title":"TPNET: A time-sensitive small sample multimodal network for cardiotoxicity risk prediction.","authors":"Yuan He, Fengyun Zhang, Kaimiao Hu, Changming Sun, Jie Geng, Ning Ren, Ran Su","doi":"10.1109/JBHI.2025.3552819","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer therapy-related cardiac dysfunction (CTRCD) is a potential complication associated with cancer treatment, particularly in patients with breast cancer, requiring monitoring of cardiac health during the treatment process. Tissue Doppler imaging (TDI) is a remarkable technique that can provide a comprehensive reflection of the left ventricle's physiological status. We hypothesized that the combination of TDI features with deep learning techniques could be utilized to predict CTRCD. To evaluate the hypothesis, we developed a temporal-multimodal pattern network for efficient training (TPNET) model to predict the incidence of CTRCD over a 24-month period based on TDI, function, and clinical data from 270 patients. Our model achieved an area under curve (AUC) of 0.83 and sensitivity of 0.88, demonstrating greater robustness compared to other existing visual models. To further translate our model's findings into practical applications, we utilized the integrated gradients (IG) attribution to perform a detailed evaluation of all the features. This analysis has identified key pathogenic signs that may have remained unnoticed, providing a viable option for implementing our model in preoperative breast cancer patients. Additionally, our findings demonstrate the potential of TPNET in discovering new causative agents for CTRCD.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3552819","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer therapy-related cardiac dysfunction (CTRCD) is a potential complication associated with cancer treatment, particularly in patients with breast cancer, requiring monitoring of cardiac health during the treatment process. Tissue Doppler imaging (TDI) is a remarkable technique that can provide a comprehensive reflection of the left ventricle's physiological status. We hypothesized that the combination of TDI features with deep learning techniques could be utilized to predict CTRCD. To evaluate the hypothesis, we developed a temporal-multimodal pattern network for efficient training (TPNET) model to predict the incidence of CTRCD over a 24-month period based on TDI, function, and clinical data from 270 patients. Our model achieved an area under curve (AUC) of 0.83 and sensitivity of 0.88, demonstrating greater robustness compared to other existing visual models. To further translate our model's findings into practical applications, we utilized the integrated gradients (IG) attribution to perform a detailed evaluation of all the features. This analysis has identified key pathogenic signs that may have remained unnoticed, providing a viable option for implementing our model in preoperative breast cancer patients. Additionally, our findings demonstrate the potential of TPNET in discovering new causative agents for CTRCD.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.