Prashun Acharya, Garima Thapa, Xiayi Liao, Samaneh Matoo, Maura J Graves, Sarah Y Atallah, Ashna K Tipirneni, Tram Nguyen, Niki M Chhabra, Jaden Maschack, Mackenzie R Herod, Favour A Ohaezu, Alder Robison, Ashwini Mudaliyar, Jasvinder Bharaj, Nicole Roeser, Katherine Holmes, Vishwaas Nayak, Rayah Alsayed, Benjamin J Perrin, Scott W Crawley
{"title":"Select autosomal dominant DFNA11 deafness mutations activate Myo7A targeting in epithelial cells.","authors":"Prashun Acharya, Garima Thapa, Xiayi Liao, Samaneh Matoo, Maura J Graves, Sarah Y Atallah, Ashna K Tipirneni, Tram Nguyen, Niki M Chhabra, Jaden Maschack, Mackenzie R Herod, Favour A Ohaezu, Alder Robison, Ashwini Mudaliyar, Jasvinder Bharaj, Nicole Roeser, Katherine Holmes, Vishwaas Nayak, Rayah Alsayed, Benjamin J Perrin, Scott W Crawley","doi":"10.1242/jcs.263982","DOIUrl":null,"url":null,"abstract":"<p><p>Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements that control Myo7A within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A targeting is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263982","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements that control Myo7A within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A targeting is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.