Generalizability of Treatment Outcome Prediction Across Antidepressant Treatment Trials in Depression.

IF 10.5 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Peter Zhukovsky, Madhukar H Trivedi, Myrna Weissman, Ramin Parsey, Sidney Kennedy, Diego A Pizzagalli
{"title":"Generalizability of Treatment Outcome Prediction Across Antidepressant Treatment Trials in Depression.","authors":"Peter Zhukovsky, Madhukar H Trivedi, Myrna Weissman, Ramin Parsey, Sidney Kennedy, Diego A Pizzagalli","doi":"10.1001/jamanetworkopen.2025.1310","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>Although several predictive models for response to antidepressant treatment have emerged on the basis of individual clinical trials, it is unclear whether such models generalize to different clinical and geographical contexts.</p><p><strong>Objective: </strong>To assess whether neuroimaging and clinical features predict response to sertraline and escitalopram in patients with major depressive disorder (MDD) across 2 multisite studies using machine learning and to predict change in depression severity in 2 independent studies.</p><p><strong>Design, setting, and participants: </strong>This prognostic study included structural and functional resting-state magnetic resonance imaging and clinical and demographic data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) randomized clinical trial (RCT), which administered sertraline (in stage 1 and stage 2) and placebo, and the Canadian Biomarker Integration Network in Depression (CANBIND-1) RCT, which administered escitalopram. EMBARC recruited participants with MDD (aged 18-65 years) at 4 academic sites across the US between August 2011 and December 2015. CANBIND-1 recruited participants with MDD from 6 outpatient centers across Canada between August 2013 and December 2016. Data were analyzed from October 2023 to May 2024.</p><p><strong>Main outcomes and measures: </strong>Prediction performance for treatment response was assessed using balanced classification accuracy and area under the curve (AUC). In secondary analyses, prediction performance was assessed using observed vs predicted correlations between change in depression severity.</p><p><strong>Results: </strong>In 363 adult patients (225 from EMBARC and 138 from CANBIND-1; mean [SD] age, 36.6 [13.1] years; 235 women [64.7%]), the best-performing models using pretreatment clinical features and functional connectivity of the dorsal anterior cingulate had moderate cross-trial generalizability for antidepressant treatment (trained on CANBIND-1 and tested on EMBARC, AUC = 0.62 for stage 1 and AUC = 0.67 for stage 2; trained on EMBARC stage 1 and tested on CANBIND-1, AUC = 0.66). The addition of neuroimaging features improved the prediction performance of antidepressant response compared with clinical features only. The use of early-treatment (week 2) instead of pretreatment depression severity scores resulted in the best generalization performance, comparable to within-trial performance. Multivariate regressions showed substantial cross-trial generalizability in change in depression severity (predicted vs observed r ranging from 0.31 to 0.39).</p><p><strong>Conclusions and relevance: </strong>In this prognostic study of depression outcomes, models predicting response to antidepressants show substantial generalizability across different RCTs of adult MDD.</p>","PeriodicalId":14694,"journal":{"name":"JAMA Network Open","volume":"8 3","pages":"e251310"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA Network Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamanetworkopen.2025.1310","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: Although several predictive models for response to antidepressant treatment have emerged on the basis of individual clinical trials, it is unclear whether such models generalize to different clinical and geographical contexts.

Objective: To assess whether neuroimaging and clinical features predict response to sertraline and escitalopram in patients with major depressive disorder (MDD) across 2 multisite studies using machine learning and to predict change in depression severity in 2 independent studies.

Design, setting, and participants: This prognostic study included structural and functional resting-state magnetic resonance imaging and clinical and demographic data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) randomized clinical trial (RCT), which administered sertraline (in stage 1 and stage 2) and placebo, and the Canadian Biomarker Integration Network in Depression (CANBIND-1) RCT, which administered escitalopram. EMBARC recruited participants with MDD (aged 18-65 years) at 4 academic sites across the US between August 2011 and December 2015. CANBIND-1 recruited participants with MDD from 6 outpatient centers across Canada between August 2013 and December 2016. Data were analyzed from October 2023 to May 2024.

Main outcomes and measures: Prediction performance for treatment response was assessed using balanced classification accuracy and area under the curve (AUC). In secondary analyses, prediction performance was assessed using observed vs predicted correlations between change in depression severity.

Results: In 363 adult patients (225 from EMBARC and 138 from CANBIND-1; mean [SD] age, 36.6 [13.1] years; 235 women [64.7%]), the best-performing models using pretreatment clinical features and functional connectivity of the dorsal anterior cingulate had moderate cross-trial generalizability for antidepressant treatment (trained on CANBIND-1 and tested on EMBARC, AUC = 0.62 for stage 1 and AUC = 0.67 for stage 2; trained on EMBARC stage 1 and tested on CANBIND-1, AUC = 0.66). The addition of neuroimaging features improved the prediction performance of antidepressant response compared with clinical features only. The use of early-treatment (week 2) instead of pretreatment depression severity scores resulted in the best generalization performance, comparable to within-trial performance. Multivariate regressions showed substantial cross-trial generalizability in change in depression severity (predicted vs observed r ranging from 0.31 to 0.39).

Conclusions and relevance: In this prognostic study of depression outcomes, models predicting response to antidepressants show substantial generalizability across different RCTs of adult MDD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMA Network Open
JAMA Network Open Medicine-General Medicine
CiteScore
16.00
自引率
2.90%
发文量
2126
审稿时长
16 weeks
期刊介绍: JAMA Network Open, a member of the esteemed JAMA Network, stands as an international, peer-reviewed, open-access general medical journal.The publication is dedicated to disseminating research across various health disciplines and countries, encompassing clinical care, innovation in health care, health policy, and global health. JAMA Network Open caters to clinicians, investigators, and policymakers, providing a platform for valuable insights and advancements in the medical field. As part of the JAMA Network, a consortium of peer-reviewed general medical and specialty publications, JAMA Network Open contributes to the collective knowledge and understanding within the medical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信