{"title":"Mechanism of action of lncRNA-NEAT1 in immune diseases.","authors":"Ruo-Xuan Zhang, Zi-Xuan Zhang, Xiang-Yu Zhao, Yi-Han Liu, Xiao-Meng Zhang, Qin Han, Xiao-Yu Wang","doi":"10.3389/fgene.2025.1501115","DOIUrl":null,"url":null,"abstract":"<p><p>NEAT1, a long non-coding RNA (lncRNA), is involved in assembling nuclear paraspeckles that have been found to impact various immune-related diseases, such as autoimmune diseases, allergic diseases, cancer immunity, sepsis, etc. In immune-related diseases, lncRNA-NEAT1 affects the activation, proliferation, and differentiation process of immune cells by interacting with transcription factors and miRNA (MicroRNA) to regulate an expression level in immune-related genes. It can also regulate the apoptosis and autophagy processes of immune cells by regulating inflammatory responses, interacting with apoptosis-related proteins, or regulating the expression of autophagy-related genes, thereby regulating the development of immune-related diseases. In recent years, a large number of researchers have found that the abnormal expression of lncRNA-NEAT1 has a great impact on the onset and progression of immune diseases, such as innate immunity after viral infection and the humoral immunity of T lymphocytes. In this paper, the specific mechanism of action and the function of lncRNA-NEAT1 in different immune-related diseases are sorted out and analyzed, to furnish a theoretical foundation for the study of the mechanism of action of immune cells.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1501115"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1501115","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
NEAT1, a long non-coding RNA (lncRNA), is involved in assembling nuclear paraspeckles that have been found to impact various immune-related diseases, such as autoimmune diseases, allergic diseases, cancer immunity, sepsis, etc. In immune-related diseases, lncRNA-NEAT1 affects the activation, proliferation, and differentiation process of immune cells by interacting with transcription factors and miRNA (MicroRNA) to regulate an expression level in immune-related genes. It can also regulate the apoptosis and autophagy processes of immune cells by regulating inflammatory responses, interacting with apoptosis-related proteins, or regulating the expression of autophagy-related genes, thereby regulating the development of immune-related diseases. In recent years, a large number of researchers have found that the abnormal expression of lncRNA-NEAT1 has a great impact on the onset and progression of immune diseases, such as innate immunity after viral infection and the humoral immunity of T lymphocytes. In this paper, the specific mechanism of action and the function of lncRNA-NEAT1 in different immune-related diseases are sorted out and analyzed, to furnish a theoretical foundation for the study of the mechanism of action of immune cells.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.