{"title":"SERTM2: a neuroactive player in the world of micropeptides.","authors":"Michela Lisi, Tiziana Santini, Tiziano D'Andrea, Beatrice Salvatori, Adriano Setti, Alessandro Paiardini, Sofia Nutarelli, Carmine Nicoletti, Flaminia Pellegrini, Sergio Fucile, Irene Bozzoni, Julie Martone","doi":"10.1038/s44319-025-00404-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we analyze the long noncoding RNA, lncMN3, that is predominantly expressed in motor neurons and shows potential coding capabilities. Utilizing custom antibodies, we demonstrate the production of a lncMN3-derived type I transmembrane micropeptide, SERTM2. Patch-clamp experiments performed on both wild-type and SERTM2 knockout motor neurons, differentiated in vitro from mouse embryonic stem cells, show a difference in the resting membrane potential and overall decreased excitability upon SERTM2 depletion. In vivo studies indicate that the absence of the peptide impairs treadmill test performance. At the mechanistic level, we identify a two-pore domain potassium channel, TASK1, known to be a major determinant of the resting membrane potential in motor neurons, as a SERTM2 interactor. Our study characterizes one of the first lncRNA-derived micropeptides involved in neuronal physiology.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00404-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we analyze the long noncoding RNA, lncMN3, that is predominantly expressed in motor neurons and shows potential coding capabilities. Utilizing custom antibodies, we demonstrate the production of a lncMN3-derived type I transmembrane micropeptide, SERTM2. Patch-clamp experiments performed on both wild-type and SERTM2 knockout motor neurons, differentiated in vitro from mouse embryonic stem cells, show a difference in the resting membrane potential and overall decreased excitability upon SERTM2 depletion. In vivo studies indicate that the absence of the peptide impairs treadmill test performance. At the mechanistic level, we identify a two-pore domain potassium channel, TASK1, known to be a major determinant of the resting membrane potential in motor neurons, as a SERTM2 interactor. Our study characterizes one of the first lncRNA-derived micropeptides involved in neuronal physiology.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.