Interactions of fractional solitons with local defects: Stabilization and scattering.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0259305
Thawatchai Mayteevarunyoo, Boris A Malomed
{"title":"Interactions of fractional solitons with local defects: Stabilization and scattering.","authors":"Thawatchai Mayteevarunyoo, Boris A Malomed","doi":"10.1063/5.0259305","DOIUrl":null,"url":null,"abstract":"<p><p>Stability is an essential problem in theoretical and experimental studies of solitons in nonlinear media with fractional diffraction, which is represented by the Riesz derivative with Lévy index (LI) α, taking values α<2. Fractional solitons are unstable at α≤1 or α≤2 in uniform one-dimensional media with the cubic or quintic self-focusing, respectively. We demonstrate that, in these cases, the solitons may be effectively stabilized by pinning to a delta-functional trapping potential (attractive defect), which is a relevant setting in optical waveguides with the effective fractional diffraction. Using the respective fractional nonlinear Schrödinger equation with the delta-functional potential term, we find that, in the case of the cubic self-focusing, the fractional solitons are fully stabilized by the pinning to the defect for α=1 and partly stabilized for α<1. In the case of the quintic self-focusing, the full and partial stabilization are found for α=2 and α<2, respectively. In both cases, the instability boundary is exactly predicted by the Vakhitov-Kolokolov criterion. Unstable solitons spontaneously transform into oscillating breathers. A variational approximation (VA) is elaborated parallel to the numerical analysis, with a conclusion that the VA produces accurate results for lower LI values, i.e., stronger fractionality. In the cubic medium, collisions of traveling stable solitons with repulsive and attractive defects are addressed too, demonstrating outcomes in the form of rebound, splitting, and passage.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0259305","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stability is an essential problem in theoretical and experimental studies of solitons in nonlinear media with fractional diffraction, which is represented by the Riesz derivative with Lévy index (LI) α, taking values α<2. Fractional solitons are unstable at α≤1 or α≤2 in uniform one-dimensional media with the cubic or quintic self-focusing, respectively. We demonstrate that, in these cases, the solitons may be effectively stabilized by pinning to a delta-functional trapping potential (attractive defect), which is a relevant setting in optical waveguides with the effective fractional diffraction. Using the respective fractional nonlinear Schrödinger equation with the delta-functional potential term, we find that, in the case of the cubic self-focusing, the fractional solitons are fully stabilized by the pinning to the defect for α=1 and partly stabilized for α<1. In the case of the quintic self-focusing, the full and partial stabilization are found for α=2 and α<2, respectively. In both cases, the instability boundary is exactly predicted by the Vakhitov-Kolokolov criterion. Unstable solitons spontaneously transform into oscillating breathers. A variational approximation (VA) is elaborated parallel to the numerical analysis, with a conclusion that the VA produces accurate results for lower LI values, i.e., stronger fractionality. In the cubic medium, collisions of traveling stable solitons with repulsive and attractive defects are addressed too, demonstrating outcomes in the form of rebound, splitting, and passage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信