Enhancing sparse identification of nonlinear dynamics with Earth-Mover distance and group similarity.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0214404
Donglin Liu, Alexandros Sopasakis
{"title":"Enhancing sparse identification of nonlinear dynamics with Earth-Mover distance and group similarity.","authors":"Donglin Liu, Alexandros Sopasakis","doi":"10.1063/5.0214404","DOIUrl":null,"url":null,"abstract":"<p><p>The sparse identification of nonlinear dynamics (SINDy) algorithm enables us to discover nonlinear dynamical systems purely from data but is noise-sensitive, especially in low-data scenarios. In this work, we introduce an advanced method that integrates group sparsity thresholds with Earth Mover's distance-based similarity measures in order to enhance the robustness of identifying nonlinear dynamics and the learn functions of dynamical systems governed by parametric ordinary differential equations. This novel approach, which we call group similarity SINDy (GS-SINDy), not only improves interpretability and accuracy in varied parametric settings but also isolates the relevant dynamical features across different datasets, thus bolstering model adaptability and relevance. Applied to several complex systems, including the Lotka-Volterra, Van der Pol, Lorenz, and Brusselator models, GS-SINDy demonstrates consistently enhanced accuracy and reliability, showcasing its effectiveness in diverse applications.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0214404","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The sparse identification of nonlinear dynamics (SINDy) algorithm enables us to discover nonlinear dynamical systems purely from data but is noise-sensitive, especially in low-data scenarios. In this work, we introduce an advanced method that integrates group sparsity thresholds with Earth Mover's distance-based similarity measures in order to enhance the robustness of identifying nonlinear dynamics and the learn functions of dynamical systems governed by parametric ordinary differential equations. This novel approach, which we call group similarity SINDy (GS-SINDy), not only improves interpretability and accuracy in varied parametric settings but also isolates the relevant dynamical features across different datasets, thus bolstering model adaptability and relevance. Applied to several complex systems, including the Lotka-Volterra, Van der Pol, Lorenz, and Brusselator models, GS-SINDy demonstrates consistently enhanced accuracy and reliability, showcasing its effectiveness in diverse applications.

利用土方距离和群相似度增强非线性动力学稀疏识别。
非线性动力学的稀疏识别(SINDy)算法使我们能够纯粹从数据中发现非线性动力学系统,但对噪声敏感,特别是在低数据场景下。在这项工作中,我们引入了一种先进的方法,将群体稀疏阈值与Earth Mover基于距离的相似性度量相结合,以增强识别非线性动力学和由参数常微分方程控制的动力系统的学习函数的鲁棒性。这种新颖的方法,我们称之为群体相似SINDy (GS-SINDy),不仅提高了不同参数设置下的可解释性和准确性,而且还隔离了不同数据集之间的相关动态特征,从而增强了模型的适应性和相关性。应用于几个复杂的系统,包括Lotka-Volterra, Van der Pol, Lorenz和Brusselator模型,GS-SINDy显示出不断提高的准确性和可靠性,展示了其在不同应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信