Margarita Liarou, Thomas Matthes, Stéphane Marchand-Maillet
{"title":"TimeFlow: A Density-Driven Pseudotime Method for Flow Cytometry Data Analysis.","authors":"Margarita Liarou, Thomas Matthes, Stéphane Marchand-Maillet","doi":"10.1002/cyto.a.24928","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudotime methods order cells undergoing differentiation from the least to the most differentiated. We developed TimeFlow, a new method for computing pseudotime in multi-dimensional flow cytometry datasets. TimeFlow tracks the differentiation path of each cell on a graph by following smooth changes in the cell population density. To compute the probability density function of the cells, it uses a normalizing flow model. We profiled bone marrow samples from three healthy patients using a 20-color antibody panel for flow cytometry and prepared datasets that ranged from 5,000 to 600,000 cells and included monocytes, neutrophils, erythrocytes, and B-cells at various maturation stages. TimeFlow computed fine-grained pseudotime for all the datasets, and the cell orderings were consistent with prior knowledge of human hematopoiesis. Experiments showed its potential in generalizing across patients and unseen cell states. We compared our method to 11 other pseudotime methods using in-house and public datasets and found very good performance for both linear and branching trajectories. TimeFlow's pseudotemporal orderings are useful for modeling the dynamics of cell surface proteins along linear trajectories. The biologically meaningful results in branching trajectories suggest the possibility of future applications with automated cell lineage detection. Code is available at https://github.com/MargaritaLiarou1/TimeFlow and data at https://osf.io/ykue7/.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24928","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudotime methods order cells undergoing differentiation from the least to the most differentiated. We developed TimeFlow, a new method for computing pseudotime in multi-dimensional flow cytometry datasets. TimeFlow tracks the differentiation path of each cell on a graph by following smooth changes in the cell population density. To compute the probability density function of the cells, it uses a normalizing flow model. We profiled bone marrow samples from three healthy patients using a 20-color antibody panel for flow cytometry and prepared datasets that ranged from 5,000 to 600,000 cells and included monocytes, neutrophils, erythrocytes, and B-cells at various maturation stages. TimeFlow computed fine-grained pseudotime for all the datasets, and the cell orderings were consistent with prior knowledge of human hematopoiesis. Experiments showed its potential in generalizing across patients and unseen cell states. We compared our method to 11 other pseudotime methods using in-house and public datasets and found very good performance for both linear and branching trajectories. TimeFlow's pseudotemporal orderings are useful for modeling the dynamics of cell surface proteins along linear trajectories. The biologically meaningful results in branching trajectories suggest the possibility of future applications with automated cell lineage detection. Code is available at https://github.com/MargaritaLiarou1/TimeFlow and data at https://osf.io/ykue7/.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.