An alternative adaptation strategy of the CCA-adding enzyme to accept non-canonical tRNA substrates in Ascaris suum.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Valerie Thalhofer, Claudius Doktor, Lena Philipp, Heike Betat, Mario Mörl
{"title":"An alternative adaptation strategy of the CCA-adding enzyme to accept non-canonical tRNA substrates in Ascaris suum.","authors":"Valerie Thalhofer, Claudius Doktor, Lena Philipp, Heike Betat, Mario Mörl","doi":"10.1016/j.jbc.2025.108414","DOIUrl":null,"url":null,"abstract":"<p><p>Playing a central role in translation, tRNAs act as an essential adapter linking the correct amino acid to the corresponding mRNA codon in translation. Due to this function, all tRNAs exhibit a typical secondary and tertiary structure to be recognized by the tRNA maturation enzymes as well as many components of the translation machinery. Yet, there is growing evidence for structurally deviating tRNAs in metazoan mitochondria, requiring a co-evolution and adaptation of these enzymes to the unusual structures of their substrates. Here, it is shown that the CCA-adding enzyme of Ascaris suum carries such a specific adaptation in form of a C-terminal extension. The corresponding enzymes of other nematodes also carry such extensions, and many of them have an additional adaptation in a small region of their N-terminal catalytic core. Thus, the presented data indicates that these enzymes evolved two distinct strategies to tolerate non-canonical tRNAs as substrates for CCA-incorporation. The identified C-terminal extension represents a surprising case of convergent evolution in tRNA substrate adaptation, as the nematode mitochondrial translation factor EF-Tu1 carries a similar extension that is essential for efficient binding to such structurally deviating tRNAs.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108414"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108414","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Playing a central role in translation, tRNAs act as an essential adapter linking the correct amino acid to the corresponding mRNA codon in translation. Due to this function, all tRNAs exhibit a typical secondary and tertiary structure to be recognized by the tRNA maturation enzymes as well as many components of the translation machinery. Yet, there is growing evidence for structurally deviating tRNAs in metazoan mitochondria, requiring a co-evolution and adaptation of these enzymes to the unusual structures of their substrates. Here, it is shown that the CCA-adding enzyme of Ascaris suum carries such a specific adaptation in form of a C-terminal extension. The corresponding enzymes of other nematodes also carry such extensions, and many of them have an additional adaptation in a small region of their N-terminal catalytic core. Thus, the presented data indicates that these enzymes evolved two distinct strategies to tolerate non-canonical tRNAs as substrates for CCA-incorporation. The identified C-terminal extension represents a surprising case of convergent evolution in tRNA substrate adaptation, as the nematode mitochondrial translation factor EF-Tu1 carries a similar extension that is essential for efficient binding to such structurally deviating tRNAs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信