The role of vitamin K and its antagonist in the process of ferroptosis-damaged RPE-mediated CNV.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Xiaochan Dai, Xi Yang, Yifan Feng, Xinyuan Wu, Yahan Ju, Rong Zou, Fei Yuan
{"title":"The role of vitamin K and its antagonist in the process of ferroptosis-damaged RPE-mediated CNV.","authors":"Xiaochan Dai, Xi Yang, Yifan Feng, Xinyuan Wu, Yahan Ju, Rong Zou, Fei Yuan","doi":"10.1038/s41419-025-07497-0","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in people over the age of 55. AMD currently affects approximately 8% of the world's population, and the number is growing as the global population ages. Growing evidence suggests that pathological choroidal neovascularization (CNV) is often related to more severe and rapid vision loss and blindness associated with AMD. The typical clinical treatment is intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents. However, some patients do not respond well to this therapy, and the potential risks of long-term repeated injections cannot be ignored. Therefore, there is an urgent need to explore the specific mechanisms of CNV development and find new, safe, and effective treatments. In this study, our data indicate that ferroptotic damage of retinal pigment epithelium (RPE) and its induced VEGFA overexpression are critical promoting factors in the development of CNV. Vitamin K can mediate the protection of RPE cells from ferroptotic damage and regulate the expression of eIF2α-ATF4-VEGFA in a VKOR/FSP1-dependent manner, inhibiting new angiogenesis to alleviate CNV. On the contrary, vitamin K antagonists (VKA) represented by warfarin, can promote RPE ferroptotic damage and related vascular proliferation in mice and eventually aggravate CNV lesions. However, vitamin K still showed significant protective effects even in the presence of VKA. Due to its significant anti-ferroptosis and anti-neovascular effects, as well as its relative safety and convenience of use, vitamin K has excellent potential in the treatment of CNV and is expected to become a clinically effective and safe new CNV treatment strategy.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"190"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07497-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in people over the age of 55. AMD currently affects approximately 8% of the world's population, and the number is growing as the global population ages. Growing evidence suggests that pathological choroidal neovascularization (CNV) is often related to more severe and rapid vision loss and blindness associated with AMD. The typical clinical treatment is intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents. However, some patients do not respond well to this therapy, and the potential risks of long-term repeated injections cannot be ignored. Therefore, there is an urgent need to explore the specific mechanisms of CNV development and find new, safe, and effective treatments. In this study, our data indicate that ferroptotic damage of retinal pigment epithelium (RPE) and its induced VEGFA overexpression are critical promoting factors in the development of CNV. Vitamin K can mediate the protection of RPE cells from ferroptotic damage and regulate the expression of eIF2α-ATF4-VEGFA in a VKOR/FSP1-dependent manner, inhibiting new angiogenesis to alleviate CNV. On the contrary, vitamin K antagonists (VKA) represented by warfarin, can promote RPE ferroptotic damage and related vascular proliferation in mice and eventually aggravate CNV lesions. However, vitamin K still showed significant protective effects even in the presence of VKA. Due to its significant anti-ferroptosis and anti-neovascular effects, as well as its relative safety and convenience of use, vitamin K has excellent potential in the treatment of CNV and is expected to become a clinically effective and safe new CNV treatment strategy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信