Silvia Sberna, Marco Filipuzzi, Nicola Bianchi, Ottavio Croci, Federica Fardella, Chiara Soriani, Sara Rohban, Sara Carnevali, Alessandra Alberta Albertini, Nicola Crosetto, Simona Rodighiero, Arianna Chiesa, Laura Curti, Stefano Campaner
{"title":"Senataxin prevents replicative stress induced by the Myc oncogene.","authors":"Silvia Sberna, Marco Filipuzzi, Nicola Bianchi, Ottavio Croci, Federica Fardella, Chiara Soriani, Sara Rohban, Sara Carnevali, Alessandra Alberta Albertini, Nicola Crosetto, Simona Rodighiero, Arianna Chiesa, Laura Curti, Stefano Campaner","doi":"10.1038/s41419-025-07485-4","DOIUrl":null,"url":null,"abstract":"<p><p>Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"187"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07485-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism