Unsupervised Machine Learning-Based Image Recognition of Raw Infrared Spectra: Toward Chemist-like Chemical Structural Classification and Beyond Numerical Data.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Kentarou Fuku, Takefumi Yoshida
{"title":"Unsupervised Machine Learning-Based Image Recognition of Raw Infrared Spectra: Toward Chemist-like Chemical Structural Classification and Beyond Numerical Data.","authors":"Kentarou Fuku, Takefumi Yoshida","doi":"10.1021/acs.jcim.4c01644","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in artificial intelligence have significantly improved spectral data analysis. In this study, we used unsupervised machine learning to classify chemical compounds based on infrared (IR) spectral images, without relying on prior chemical knowledge. The potential of machine learning for chemical classification was demonstrated by extracting IR spectral images from the Spectral Database for Organic Compounds and converting them into 208,620-dimensional vector data. Hierarchical clustering of 230 compounds revealed distinct main clusters (<b>A</b>-<b>G</b>), each with specific subclusters exhibiting higher intracluster similarities. Despite the challenges, including sensitivity to spectral deviations and difficulty of distinguishing delicate chemical structures in spectra with low transparency in the fingerprint area, the proposed image recognition approach exhibits good potential. Both principal component analysis and k-means clustering produced similar results. Furthermore, the method demonstrated high robustness to noise. The Tanimoto coefficient was used to evaluate the molecular similarity, providing valuable insights. However, some results deviated from chemists' intuitions. The study also highlighted that the scaling composition formulas and molecular weights did not affect the classification results because high-dimensional features dominated the process. A comparison of the clustering results obtained from molecular fingerprints, using the adjusted Rand index as a metric, indicated that the image data provided better classification performance than numerical data of the same resolution. Overall, this study demonstrates the feasibility of using machine learning with IR spectral image data for chemical classification and offers a novel perspective that complements traditional methods, although the classifications may not always align with chemists' intuitions. This approach has broader implications for fields such as drug discovery, materials science, and automated spectral analysis, where handling large, raw spectral data sets is essential.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01644","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in artificial intelligence have significantly improved spectral data analysis. In this study, we used unsupervised machine learning to classify chemical compounds based on infrared (IR) spectral images, without relying on prior chemical knowledge. The potential of machine learning for chemical classification was demonstrated by extracting IR spectral images from the Spectral Database for Organic Compounds and converting them into 208,620-dimensional vector data. Hierarchical clustering of 230 compounds revealed distinct main clusters (A-G), each with specific subclusters exhibiting higher intracluster similarities. Despite the challenges, including sensitivity to spectral deviations and difficulty of distinguishing delicate chemical structures in spectra with low transparency in the fingerprint area, the proposed image recognition approach exhibits good potential. Both principal component analysis and k-means clustering produced similar results. Furthermore, the method demonstrated high robustness to noise. The Tanimoto coefficient was used to evaluate the molecular similarity, providing valuable insights. However, some results deviated from chemists' intuitions. The study also highlighted that the scaling composition formulas and molecular weights did not affect the classification results because high-dimensional features dominated the process. A comparison of the clustering results obtained from molecular fingerprints, using the adjusted Rand index as a metric, indicated that the image data provided better classification performance than numerical data of the same resolution. Overall, this study demonstrates the feasibility of using machine learning with IR spectral image data for chemical classification and offers a novel perspective that complements traditional methods, although the classifications may not always align with chemists' intuitions. This approach has broader implications for fields such as drug discovery, materials science, and automated spectral analysis, where handling large, raw spectral data sets is essential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信