Ultrasensitive Differential Scanning Calorimetric (US-DSC) Study of the Thermal-Induced Dynamic Transition Behaviors of PEO-PPO-PEO in Aqueous Solution.
Lin Li, Kang Ni, Lvdan Liu, Yuxia Bai, Yanwei Ding
{"title":"Ultrasensitive Differential Scanning Calorimetric (US-DSC) Study of the Thermal-Induced Dynamic Transition Behaviors of PEO-PPO-PEO in Aqueous Solution.","authors":"Lin Li, Kang Ni, Lvdan Liu, Yuxia Bai, Yanwei Ding","doi":"10.1021/acs.jpcb.4c08247","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature-responsive macromolecules can provide insights into the mechanisms of the aggregation and precipitation processes of proteins. In this study, the PEO-PPO-PEO triblock copolymer, Pluronic P123, has been utilized as a protein model to investigate the thermally induced dynamic transition behavior by ultrasensitive differential scanning calorimetry (US-DSC). The results of US-DSC reveal hysteresis in the disaggregation process of P123 micelles. Combined with the particle size distribution, a stepwise disaggregation mechanism is proposed. The disaggregation of P123 micelles in the cooling process involved rod-to-sphere transition, fragmentation, and dissolution of micelles. Moreover, US-DSC results show that both the sphere-to-rod transition and micelle fragmentation are dependent on the scanning rate and reveal the relationship between the dynamic transition and thermodynamic properties of P123. These findings expand the understanding not only of aggregation and disaggregation of P123 in dilute aqueous systems but also of the thermal unfolding and aggregation of proteins.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3482-3491"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08247","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature-responsive macromolecules can provide insights into the mechanisms of the aggregation and precipitation processes of proteins. In this study, the PEO-PPO-PEO triblock copolymer, Pluronic P123, has been utilized as a protein model to investigate the thermally induced dynamic transition behavior by ultrasensitive differential scanning calorimetry (US-DSC). The results of US-DSC reveal hysteresis in the disaggregation process of P123 micelles. Combined with the particle size distribution, a stepwise disaggregation mechanism is proposed. The disaggregation of P123 micelles in the cooling process involved rod-to-sphere transition, fragmentation, and dissolution of micelles. Moreover, US-DSC results show that both the sphere-to-rod transition and micelle fragmentation are dependent on the scanning rate and reveal the relationship between the dynamic transition and thermodynamic properties of P123. These findings expand the understanding not only of aggregation and disaggregation of P123 in dilute aqueous systems but also of the thermal unfolding and aggregation of proteins.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.