Development of Donor-Acceptor Architecture-Based Potential Theranostic Fluorescent Probes for Alzheimer's Disease.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Neuroscience Pub Date : 2025-04-02 Epub Date: 2025-03-19 DOI:10.1021/acschemneuro.5c00092
Nilesh Gajanan Bajad, Gajendra T A, Khushboo Sharma, Madhu G Tapadia, Ashok Kumar, Sairam Krishnamurthy, Sushil Kumar Singh
{"title":"Development of Donor-Acceptor Architecture-Based Potential Theranostic Fluorescent Probes for Alzheimer's Disease.","authors":"Nilesh Gajanan Bajad, Gajendra T A, Khushboo Sharma, Madhu G Tapadia, Ashok Kumar, Sairam Krishnamurthy, Sushil Kumar Singh","doi":"10.1021/acschemneuro.5c00092","DOIUrl":null,"url":null,"abstract":"<p><p>The cholinergic deficits and deposition of β-amyloid (Aβ) species are regarded as the key events contributing to the progression of Alzheimer's disease (AD). Herein, a series of novel donor-acceptor architecture-type potential theranostic agents were designed, synthesized, and evaluated for their potential against cholinesterase (ChE) enzymes and detection of Aβ species, which are primary targets in the development of therapeutics for AD. The optimal compound/probe <b>18</b> containing a benzothiazolium fluorophore with a bifunctional electron-donating <i>N</i>-aryl piperazine scaffold exhibited potent inhibitory activities against acetylcholinesterase (AChE; IC<sub>50</sub> = 0.172 ± 0.011 μM) and butyrylcholinesterase (BuChE; IC<sub>50</sub> = 1.376 ± 0.141 μM). Measurement of fluorescence properties showed that probe <b>18</b> exhibited emission maxima (λ<sub>em</sub>) of >610 nm in dimethyl sulfoxide (DMSO) and >590 nm in PBS, suitable for the fluorescence imaging. <i>In vitro</i> studies demonstrated a change in fluorescence characteristics and high binding affinities (<b>18</b>; <i>K</i><sub>d</sub> = 0.731 μM) upon binding with Aβ aggregates. The affinity of probe <b>18</b> toward Aβ aggregates was further observed in <i>elavGAL4 > UAS Aβ</i>, the <i>Drosophila</i> larval brain sections, using a fluorescence imaging technique. The <i>in vivo</i> acute oral toxicity evaluation indicated a safety profile of the lead probe 18. Moreover, <i>in vivo</i> behavioral studies including Y-maze and novel object recognition tests signified that the administration of compound <b>18</b> improved cognitive and spatial memory impairment at a dose of 10 and 20 mg/kg in the scopolamine-induced cognitive deficit model.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"1388-1401"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cholinergic deficits and deposition of β-amyloid (Aβ) species are regarded as the key events contributing to the progression of Alzheimer's disease (AD). Herein, a series of novel donor-acceptor architecture-type potential theranostic agents were designed, synthesized, and evaluated for their potential against cholinesterase (ChE) enzymes and detection of Aβ species, which are primary targets in the development of therapeutics for AD. The optimal compound/probe 18 containing a benzothiazolium fluorophore with a bifunctional electron-donating N-aryl piperazine scaffold exhibited potent inhibitory activities against acetylcholinesterase (AChE; IC50 = 0.172 ± 0.011 μM) and butyrylcholinesterase (BuChE; IC50 = 1.376 ± 0.141 μM). Measurement of fluorescence properties showed that probe 18 exhibited emission maxima (λem) of >610 nm in dimethyl sulfoxide (DMSO) and >590 nm in PBS, suitable for the fluorescence imaging. In vitro studies demonstrated a change in fluorescence characteristics and high binding affinities (18; Kd = 0.731 μM) upon binding with Aβ aggregates. The affinity of probe 18 toward Aβ aggregates was further observed in elavGAL4 > UAS Aβ, the Drosophila larval brain sections, using a fluorescence imaging technique. The in vivo acute oral toxicity evaluation indicated a safety profile of the lead probe 18. Moreover, in vivo behavioral studies including Y-maze and novel object recognition tests signified that the administration of compound 18 improved cognitive and spatial memory impairment at a dose of 10 and 20 mg/kg in the scopolamine-induced cognitive deficit model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信