DNA damage response signatures are associated with frontline chemotherapy response and routes of tumor evolution in extensive stage small cell lung cancer

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Benjamin B. Morris, Simon Heeke, Yuanxin Xi, Lixia Diao, Qi Wang, Pedro Rocha, Edurne Arriola, Myung Chang Lee, Darren R. Tyson, Kyle Concannon, Kavya Ramkumar, C. Allison Stewart, Robert J. Cardnell, Runsheng Wang, Vito Quaranta, Jing Wang, John V. Heymach, Barzin Y. Nabet, David S. Shames, Carl M. Gay, Lauren A. Byers
{"title":"DNA damage response signatures are associated with frontline chemotherapy response and routes of tumor evolution in extensive stage small cell lung cancer","authors":"Benjamin B. Morris, Simon Heeke, Yuanxin Xi, Lixia Diao, Qi Wang, Pedro Rocha, Edurne Arriola, Myung Chang Lee, Darren R. Tyson, Kyle Concannon, Kavya Ramkumar, C. Allison Stewart, Robert J. Cardnell, Runsheng Wang, Vito Quaranta, Jing Wang, John V. Heymach, Barzin Y. Nabet, David S. Shames, Carl M. Gay, Lauren A. Byers","doi":"10.1186/s12943-025-02291-0","DOIUrl":null,"url":null,"abstract":"A hallmark of small cell lung cancer (SCLC) is its recalcitrance to therapy. While most SCLCs respond to frontline therapy, resistance inevitably develops. Identifying phenotypes potentiating chemoresistance and immune evasion is a crucial unmet need. Previous reports have linked upregulation of the DNA damage response (DDR) machinery to chemoresistance and immune evasion across cancers. However, it is unknown if SCLCs exhibit distinct DDR phenotypes. To study SCLC DDR phenotypes, we developed a new DDR gene analysis method and applied it to SCLC clinical samples, in vitro, and in vivo model systems. We then investigated how DDR regulation is associated with SCLC biology, chemotherapy response, and tumor evolution following therapy. Using multi-omic profiling, we demonstrate that SCLC tumors cluster into three DDR phenotypes with unique molecular features. Hallmarks of these DDR clusters include differential expression of DNA repair genes, increased replication stress, and heightened G2/M cell cycle arrest. SCLCs with elevated DDR phenotypes exhibit increased neuroendocrine features and decreased “inflamed” biomarkers, both within and across SCLC subtypes. Clinical analyses demonstrated treatment naive DDR status was associated with different responses to frontline chemotherapy. Using longitudinal liquid biopsies, we found that DDR Intermediate and High tumors exhibited subtype switching and coincident emergence of heterogenous phenotypes following frontline treatment. We establish that SCLC can be classified into one of three distinct, clinically relevant DDR clusters. Our data demonstrates that DDR status plays a key role in shaping SCLC phenotypes and may be associated with different chemotherapy responses and patterns of tumor evolution. Future work targeting DDR specific phenotypes will be instrumental in improving patient outcomes.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"11 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02291-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A hallmark of small cell lung cancer (SCLC) is its recalcitrance to therapy. While most SCLCs respond to frontline therapy, resistance inevitably develops. Identifying phenotypes potentiating chemoresistance and immune evasion is a crucial unmet need. Previous reports have linked upregulation of the DNA damage response (DDR) machinery to chemoresistance and immune evasion across cancers. However, it is unknown if SCLCs exhibit distinct DDR phenotypes. To study SCLC DDR phenotypes, we developed a new DDR gene analysis method and applied it to SCLC clinical samples, in vitro, and in vivo model systems. We then investigated how DDR regulation is associated with SCLC biology, chemotherapy response, and tumor evolution following therapy. Using multi-omic profiling, we demonstrate that SCLC tumors cluster into three DDR phenotypes with unique molecular features. Hallmarks of these DDR clusters include differential expression of DNA repair genes, increased replication stress, and heightened G2/M cell cycle arrest. SCLCs with elevated DDR phenotypes exhibit increased neuroendocrine features and decreased “inflamed” biomarkers, both within and across SCLC subtypes. Clinical analyses demonstrated treatment naive DDR status was associated with different responses to frontline chemotherapy. Using longitudinal liquid biopsies, we found that DDR Intermediate and High tumors exhibited subtype switching and coincident emergence of heterogenous phenotypes following frontline treatment. We establish that SCLC can be classified into one of three distinct, clinically relevant DDR clusters. Our data demonstrates that DDR status plays a key role in shaping SCLC phenotypes and may be associated with different chemotherapy responses and patterns of tumor evolution. Future work targeting DDR specific phenotypes will be instrumental in improving patient outcomes.
广泛期小细胞肺癌的DNA损伤反应特征与一线化疗反应和肿瘤进化途径相关
小细胞肺癌(SCLC)的一个特点是对治疗的难治性。虽然大多数小细胞癌对一线治疗有反应,但不可避免地会产生耐药性。识别增强化学耐药和免疫逃避的表型是一个关键的未满足的需求。以前的报道已经将DNA损伤反应(DDR)机制的上调与癌症的化疗耐药和免疫逃避联系起来。然而,目前尚不清楚sclc是否表现出不同的DDR表型。为了研究SCLC DDR表型,我们开发了一种新的DDR基因分析方法,并将其应用于SCLC临床样本、体外和体内模型系统。然后,我们研究了DDR调节与SCLC生物学、化疗反应和治疗后肿瘤演变的关系。使用多组学分析,我们证明SCLC肿瘤聚集成三种具有独特分子特征的DDR表型。这些DDR集群的特征包括DNA修复基因的差异表达、复制压力的增加和G2/M细胞周期阻滞的加剧。DDR表型升高的SCLC表现出增加的神经内分泌特征和减少的“炎症”生物标志物,无论是在SCLC亚型内还是跨SCLC亚型。临床分析表明,治疗初期DDR状态与一线化疗的不同反应相关。通过纵向液体活检,我们发现DDR中高水平肿瘤在一线治疗后表现出亚型转换和异质表型的同时出现。我们确定SCLC可以分为三个不同的,临床相关的DDR集群之一。我们的数据表明,DDR状态在SCLC表型的形成中起着关键作用,并可能与不同的化疗反应和肿瘤进化模式有关。未来针对DDR特异性表型的工作将有助于改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信