Credibility assessment of a mechanistic model of atherosclerosis to predict cardiovascular outcomes under lipid-lowering therapy

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Yishu Wang, Eulalie Courcelles, Emmanuel Peyronnet, Solène Porte, Alizée Diatchenko, Evgueni Jacob, Denis Angoulvant, Pierre Amarenco, Franck Boccara, Bertrand Cariou, Guillaume Mahé, Philippe Gabriel Steg, Alexandre Bastien, Lolita Portal, Jean-Pierre Boissel, Solène Granjeon-Noriot, Emmanuelle Bechet
{"title":"Credibility assessment of a mechanistic model of atherosclerosis to predict cardiovascular outcomes under lipid-lowering therapy","authors":"Yishu Wang, Eulalie Courcelles, Emmanuel Peyronnet, Solène Porte, Alizée Diatchenko, Evgueni Jacob, Denis Angoulvant, Pierre Amarenco, Franck Boccara, Bertrand Cariou, Guillaume Mahé, Philippe Gabriel Steg, Alexandre Bastien, Lolita Portal, Jean-Pierre Boissel, Solène Granjeon-Noriot, Emmanuelle Bechet","doi":"10.1038/s41746-025-01557-7","DOIUrl":null,"url":null,"abstract":"<p>Demonstrating cardiovascular (CV) benefits with lipid-lowering therapy (LLT) requires long-term randomized clinical trials (RCTs) with thousands of patients. Innovative approaches such as in silico trials applying a disease computational model to virtual patients receiving multiple treatments offer a complementary approach to rapidly generate comparative effectiveness data. A mechanistic computational model of atherosclerotic cardiovascular disease (ASCVD) was built from knowledge, describing lipoprotein homeostasis, LLT effects, and the progression of atherosclerotic plaques leading to myocardial infarction, ischemic stroke, major acute limb event and CV death. The ASCVD model was successfully calibrated and validated, and reproduced LLT effects observed in selected RCTs (ORION-10 and FOURIER for calibration; ORION-11, ODYSSEY-OUTCOMES and FOURIER-OLE for validation) on lipoproteins and ASCVD event incidence at both population and subgroup levels. This enables the future use of the model to conduct the SIRIUS programme, which intends to predict CV event reduction with inclisiran, an siRNA targeting hepatic PCSK9 mRNA.</p><figure></figure>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"34 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01557-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Demonstrating cardiovascular (CV) benefits with lipid-lowering therapy (LLT) requires long-term randomized clinical trials (RCTs) with thousands of patients. Innovative approaches such as in silico trials applying a disease computational model to virtual patients receiving multiple treatments offer a complementary approach to rapidly generate comparative effectiveness data. A mechanistic computational model of atherosclerotic cardiovascular disease (ASCVD) was built from knowledge, describing lipoprotein homeostasis, LLT effects, and the progression of atherosclerotic plaques leading to myocardial infarction, ischemic stroke, major acute limb event and CV death. The ASCVD model was successfully calibrated and validated, and reproduced LLT effects observed in selected RCTs (ORION-10 and FOURIER for calibration; ORION-11, ODYSSEY-OUTCOMES and FOURIER-OLE for validation) on lipoproteins and ASCVD event incidence at both population and subgroup levels. This enables the future use of the model to conduct the SIRIUS programme, which intends to predict CV event reduction with inclisiran, an siRNA targeting hepatic PCSK9 mRNA.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信