{"title":"Credibility assessment of a mechanistic model of atherosclerosis to predict cardiovascular outcomes under lipid-lowering therapy","authors":"Yishu Wang, Eulalie Courcelles, Emmanuel Peyronnet, Solène Porte, Alizée Diatchenko, Evgueni Jacob, Denis Angoulvant, Pierre Amarenco, Franck Boccara, Bertrand Cariou, Guillaume Mahé, Philippe Gabriel Steg, Alexandre Bastien, Lolita Portal, Jean-Pierre Boissel, Solène Granjeon-Noriot, Emmanuelle Bechet","doi":"10.1038/s41746-025-01557-7","DOIUrl":null,"url":null,"abstract":"<p>Demonstrating cardiovascular (CV) benefits with lipid-lowering therapy (LLT) requires long-term randomized clinical trials (RCTs) with thousands of patients. Innovative approaches such as in silico trials applying a disease computational model to virtual patients receiving multiple treatments offer a complementary approach to rapidly generate comparative effectiveness data. A mechanistic computational model of atherosclerotic cardiovascular disease (ASCVD) was built from knowledge, describing lipoprotein homeostasis, LLT effects, and the progression of atherosclerotic plaques leading to myocardial infarction, ischemic stroke, major acute limb event and CV death. The ASCVD model was successfully calibrated and validated, and reproduced LLT effects observed in selected RCTs (ORION-10 and FOURIER for calibration; ORION-11, ODYSSEY-OUTCOMES and FOURIER-OLE for validation) on lipoproteins and ASCVD event incidence at both population and subgroup levels. This enables the future use of the model to conduct the SIRIUS programme, which intends to predict CV event reduction with inclisiran, an siRNA targeting hepatic PCSK9 mRNA.</p><figure></figure>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"34 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01557-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Demonstrating cardiovascular (CV) benefits with lipid-lowering therapy (LLT) requires long-term randomized clinical trials (RCTs) with thousands of patients. Innovative approaches such as in silico trials applying a disease computational model to virtual patients receiving multiple treatments offer a complementary approach to rapidly generate comparative effectiveness data. A mechanistic computational model of atherosclerotic cardiovascular disease (ASCVD) was built from knowledge, describing lipoprotein homeostasis, LLT effects, and the progression of atherosclerotic plaques leading to myocardial infarction, ischemic stroke, major acute limb event and CV death. The ASCVD model was successfully calibrated and validated, and reproduced LLT effects observed in selected RCTs (ORION-10 and FOURIER for calibration; ORION-11, ODYSSEY-OUTCOMES and FOURIER-OLE for validation) on lipoproteins and ASCVD event incidence at both population and subgroup levels. This enables the future use of the model to conduct the SIRIUS programme, which intends to predict CV event reduction with inclisiran, an siRNA targeting hepatic PCSK9 mRNA.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.