PAC-learning of free-fermionic states is NP-hard

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-03-20 DOI:10.22331/q-2025-03-20-1665
Lennart Bittel, Antonio A. Mele, Jens Eisert, Lorenzo Leone
{"title":"PAC-learning of free-fermionic states is NP-hard","authors":"Lennart Bittel, Antonio A. Mele, Jens Eisert, Lorenzo Leone","doi":"10.22331/q-2025-03-20-1665","DOIUrl":null,"url":null,"abstract":"Free-fermionic states, also known as matchgates or Gaussian states, are a fundamental class of quantum states due to their efficient classical simulability and their crucial role across various domains of Physics. With the advent of quantum devices, experiments now yield data from quantum states, including estimates of expectation values. We establish that deciding whether a given dataset, formed by a few Majorana correlation functions estimates, can be consistent with a free-fermionic state is an NP-complete problem. Our result also extends to datasets formed by estimates of Pauli expectation values. This is in stark contrast to the case of stabilizer states, where the analogous problem can be efficiently solved. Moreover, our results directly imply that free-fermionic states are computationally hard to properly PAC-learn, where PAC-learning of quantum states is a learning framework introduced by Aaronson. Remarkably, this is the first class of classically simulable quantum states shown to have this property.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"26 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-20-1665","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Free-fermionic states, also known as matchgates or Gaussian states, are a fundamental class of quantum states due to their efficient classical simulability and their crucial role across various domains of Physics. With the advent of quantum devices, experiments now yield data from quantum states, including estimates of expectation values. We establish that deciding whether a given dataset, formed by a few Majorana correlation functions estimates, can be consistent with a free-fermionic state is an NP-complete problem. Our result also extends to datasets formed by estimates of Pauli expectation values. This is in stark contrast to the case of stabilizer states, where the analogous problem can be efficiently solved. Moreover, our results directly imply that free-fermionic states are computationally hard to properly PAC-learn, where PAC-learning of quantum states is a learning framework introduced by Aaronson. Remarkably, this is the first class of classically simulable quantum states shown to have this property.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信