Machine learning assisted approximation of descriptors (CO and OH) binding energy on Cu-based bimetallic alloys†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Pallavi Dandekar, Aditya Singh Ambesh, Tuhin Suvra Khan and Shelaka Gupta
{"title":"Machine learning assisted approximation of descriptors (CO and OH) binding energy on Cu-based bimetallic alloys†","authors":"Pallavi Dandekar, Aditya Singh Ambesh, Tuhin Suvra Khan and Shelaka Gupta","doi":"10.1039/D4CP04887C","DOIUrl":null,"url":null,"abstract":"<p >Data driven machine learning (ML) based methods have the potential to significantly reduce the computational as well as experimental cost for the rapid and high-throughput screening of catalyst materials using binding energy as a descriptor. In this study, a set of eight widely used ML models classified as linear, kernel and tree-based ensemble models were evaluated to predict the binding energy of catalytic descriptors (CO* and OH*) on (111)-terminated Cu<small><sub>3</sub></small>M alloy surfaces using the readily available metal properties in the periodic table as features. Among all the models tested, the extreme gradient boosting regressor (xGBR) model showed the best performance with the root mean square errors (RMSEs) of 0.091 eV and 0.196 eV for CO and OH binding energy predictions on (111)-terminated A<small><sub>3</sub></small>B alloy surfaces. Moreover, the xGBR model gave the highest <em>R</em><small><sup>2</sup></small> scores of 0.970 and 0.890 for CO and OH binding energies. The time taken by the ML predictions for 25 000 fits for each model was varied between 5 and 60 min on a 6 core and 8 GB RAM laptop, which was very negligible as compared to DFT calculations. Our ML model showed remarkable performance for accurately predicting the CO and OH binding energies on a (111)-terminated Cu<small><sub>3</sub></small>M alloy with a mean absolute error (MAE) of 0.02 to 0.03 eV compared to DFT calculated values. The ML predicted binding energies can be further used with an <em>ab initio</em> microkinetic model (MKM) to efficiently screen A<small><sub>3</sub></small>B-type bimetallic alloys for the formic acid decomposition reaction.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 14","pages":" 7151-7168"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d4cp04887c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04887c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Data driven machine learning (ML) based methods have the potential to significantly reduce the computational as well as experimental cost for the rapid and high-throughput screening of catalyst materials using binding energy as a descriptor. In this study, a set of eight widely used ML models classified as linear, kernel and tree-based ensemble models were evaluated to predict the binding energy of catalytic descriptors (CO* and OH*) on (111)-terminated Cu3M alloy surfaces using the readily available metal properties in the periodic table as features. Among all the models tested, the extreme gradient boosting regressor (xGBR) model showed the best performance with the root mean square errors (RMSEs) of 0.091 eV and 0.196 eV for CO and OH binding energy predictions on (111)-terminated A3B alloy surfaces. Moreover, the xGBR model gave the highest R2 scores of 0.970 and 0.890 for CO and OH binding energies. The time taken by the ML predictions for 25 000 fits for each model was varied between 5 and 60 min on a 6 core and 8 GB RAM laptop, which was very negligible as compared to DFT calculations. Our ML model showed remarkable performance for accurately predicting the CO and OH binding energies on a (111)-terminated Cu3M alloy with a mean absolute error (MAE) of 0.02 to 0.03 eV compared to DFT calculated values. The ML predicted binding energies can be further used with an ab initio microkinetic model (MKM) to efficiently screen A3B-type bimetallic alloys for the formic acid decomposition reaction.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信