Parity violation effects on the electric field gradient†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Juan J. Aucar and Alejandro F. Maldonado
{"title":"Parity violation effects on the electric field gradient†","authors":"Juan J. Aucar and Alejandro F. Maldonado","doi":"10.1039/D4CP04840G","DOIUrl":null,"url":null,"abstract":"<p >The parity violation (PV) effects on the electric field gradient (EFG) and the nuclear quadrupole coupling constant (NQCC) of a wide variety of chiral systems are studied in a four-component (4c) framework. Formal expressions and calculations of the PV effects on the EFG are presented for the first time at 4c Dirac Hartree–Fock level. The chiral systems studied are XHFClY (X = C, Sn; Y = Br, I, At) molecules together with NUHXY (X, Y = F, Cl, Br, I) and NUF XY (X, Y = Cl, Br, I) uranium containing systems. We found that for the latter, calculations of PV effects on NQCC are two orders of magnitude lower than the current experimental precision and they are suitable candidates for future PV measurements in NQCC, in particular the NUHFCl chiral molecule. The dependence on the basis set, the nuclear charge distribution model and the kinetic balance prescription related to the negative-energy states is also analysed.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 15","pages":" 7594-7604"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04840g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The parity violation (PV) effects on the electric field gradient (EFG) and the nuclear quadrupole coupling constant (NQCC) of a wide variety of chiral systems are studied in a four-component (4c) framework. Formal expressions and calculations of the PV effects on the EFG are presented for the first time at 4c Dirac Hartree–Fock level. The chiral systems studied are XHFClY (X = C, Sn; Y = Br, I, At) molecules together with NUHXY (X, Y = F, Cl, Br, I) and NUF XY (X, Y = Cl, Br, I) uranium containing systems. We found that for the latter, calculations of PV effects on NQCC are two orders of magnitude lower than the current experimental precision and they are suitable candidates for future PV measurements in NQCC, in particular the NUHFCl chiral molecule. The dependence on the basis set, the nuclear charge distribution model and the kinetic balance prescription related to the negative-energy states is also analysed.

Abstract Image

宇称违和对电场梯度的影响
在四组分(4c)框架下研究了多种手性体系的宇称破坏(PV)对电场梯度(EFG)和核四极耦合常数(NQCC)的影响。本文首次在4c Dirac Hartree-Fock水平上给出了PV效应对EFG的形式表达式和计算。所研究的手性体系为XHFClY (X = C, Sn;Y = Br, I, At)分子与NUHXY (X, Y = F, Cl, Br, I)和NUFXY (X, Y = Cl, Br, I)含铀体系结合。我们发现,对于后者,计算NQCC的PV效应比目前的实验精度低两个数量级,它们是未来NQCC中PV测量的合适候选,特别是NUHFCl手性分子。分析了负能态对基集、核电荷分布模型和动力学平衡公式的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信