Tailoring fracture resistance of a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy by intrinsic toughening

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Manoj Yadav, Niraj Nayan, Krishanu Biswas, N.P. Gurao
{"title":"Tailoring fracture resistance of a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy by intrinsic toughening","authors":"Manoj Yadav, Niraj Nayan, Krishanu Biswas, N.P. Gurao","doi":"10.1016/j.ijplas.2025.104315","DOIUrl":null,"url":null,"abstract":"Metastable high entropy alloys (HEAs) provide an exceptional combination of strength and ductility by the synergistic operation of slip, twinning, and transformation; however, their fracture behaviour remains unexplored. In the present investigation, tensile and elastic-plastic fracture toughness tests with a 2D digital image correlation setup were carried out for different microstructural states of Fe<sub>42</sub>Mn<sub>28</sub>Co<sub>10</sub>Cr<sub>15</sub>Si<sub>5</sub> HEA. Finite element analysis (FEA) coupled with combinatorial site-specific electron backscatter diffraction helps in developing a meso and micro scale mechanistic understanding of the extrinsic and intrinsic toughening processes. The calculated J-integral and plastic zone size using FEA simulations were corroborated with experimental results. The crack growth resistance (J-R) curve was evaluated across three distinct processing conditions: hot rolled (HR), 1 h annealed at 1173 K (AN1173), and 4 h annealed at 1373 K (AN1373). The HR material exhibited higher strength (yield strength = 630 ± 8 MPa), while the AN1373 demonstrated highest ductility (0.74 ± 0.04). The mode I plane strain fracture toughness was highest for the AN1373 (125.4 ± 15.8 MPa.m<sup>0.5</sup>) and lowest for the AN1173 (46.3 ± 7.4 MPa.m<sup>0.5</sup>). The Cr-rich sigma phase at grain boundaries in the HR and AN1173 led to pronounced intergranular fracture, resulting in lower fracture toughness and plasticity. The multiple variants of martensite in the AN1373 microstructural state, results in refined microstructure by interactions of transformation variants and dislocations that enhance the strength, ductility, and crack tip plasticity. The findings underscore the significant impact of intrinsic toughening on the fracture and deformation behaviour of the Fe<sub>42</sub>Mn<sub>28</sub>Co<sub>10</sub>Cr<sub>15</sub>Si<sub>5</sub> HEA.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"5 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104315","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metastable high entropy alloys (HEAs) provide an exceptional combination of strength and ductility by the synergistic operation of slip, twinning, and transformation; however, their fracture behaviour remains unexplored. In the present investigation, tensile and elastic-plastic fracture toughness tests with a 2D digital image correlation setup were carried out for different microstructural states of Fe42Mn28Co10Cr15Si5 HEA. Finite element analysis (FEA) coupled with combinatorial site-specific electron backscatter diffraction helps in developing a meso and micro scale mechanistic understanding of the extrinsic and intrinsic toughening processes. The calculated J-integral and plastic zone size using FEA simulations were corroborated with experimental results. The crack growth resistance (J-R) curve was evaluated across three distinct processing conditions: hot rolled (HR), 1 h annealed at 1173 K (AN1173), and 4 h annealed at 1373 K (AN1373). The HR material exhibited higher strength (yield strength = 630 ± 8 MPa), while the AN1373 demonstrated highest ductility (0.74 ± 0.04). The mode I plane strain fracture toughness was highest for the AN1373 (125.4 ± 15.8 MPa.m0.5) and lowest for the AN1173 (46.3 ± 7.4 MPa.m0.5). The Cr-rich sigma phase at grain boundaries in the HR and AN1173 led to pronounced intergranular fracture, resulting in lower fracture toughness and plasticity. The multiple variants of martensite in the AN1373 microstructural state, results in refined microstructure by interactions of transformation variants and dislocations that enhance the strength, ductility, and crack tip plasticity. The findings underscore the significant impact of intrinsic toughening on the fracture and deformation behaviour of the Fe42Mn28Co10Cr15Si5 HEA.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信