A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frank Uhlmann
{"title":"A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation","authors":"Frank Uhlmann","doi":"10.1016/j.molcel.2025.02.005","DOIUrl":null,"url":null,"abstract":"The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an <em>in vitro</em>-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of <em>in vitro</em> and <em>in vivo</em> loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the “loop capture” and the “loop extrusion” model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"91 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.02.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the “loop capture” and the “loop extrusion” model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信