Human as Points: Explicit Point-based 3D Human Reconstruction from Single-view RGB Images.

Yingzhi Tang, Qijian Zhang, Yebin Liu, Junhui Hou
{"title":"Human as Points: Explicit Point-based 3D Human Reconstruction from Single-view RGB Images.","authors":"Yingzhi Tang, Qijian Zhang, Yebin Liu, Junhui Hou","doi":"10.1109/TPAMI.2025.3552408","DOIUrl":null,"url":null,"abstract":"<p><p>The latest trends in the research field of single-view human reconstruction are devoted to learning deep implicit functions constrained by explicit body shape priors. Despite the remarkable performance improvements compared with traditional processing pipelines, existing learning approaches still exhibit limitations in terms of flexibility, generalizability, robustness, and/or representation capability. To comprehensively address the above issues, in this paper, we investigate an explicit point-based human reconstruction framework named HaP, which utilizes point clouds as the intermediate representation of the target geometric structure. Technically, our approach features fully explicit point cloud estimation (exploiting depth and SMPL), manipulation (SMPL rectification), generation (built upon diffusion), and refinement (displacement learning and depth replacement) in the 3D geometric space, instead of an implicit learning process that can be ambiguous and less controllable. Extensive experiments demonstrate that our framework achieves quantitative performance improvements of 20% to 40% over current state-of-the-art methods, and better qualitative results. Our promising results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design. In addition, we newly contribute a real-scanned 3D human dataset featuring more intricate geometric details. We will make our code and data publicly available at https://github.com/yztang4/HaP.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3552408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The latest trends in the research field of single-view human reconstruction are devoted to learning deep implicit functions constrained by explicit body shape priors. Despite the remarkable performance improvements compared with traditional processing pipelines, existing learning approaches still exhibit limitations in terms of flexibility, generalizability, robustness, and/or representation capability. To comprehensively address the above issues, in this paper, we investigate an explicit point-based human reconstruction framework named HaP, which utilizes point clouds as the intermediate representation of the target geometric structure. Technically, our approach features fully explicit point cloud estimation (exploiting depth and SMPL), manipulation (SMPL rectification), generation (built upon diffusion), and refinement (displacement learning and depth replacement) in the 3D geometric space, instead of an implicit learning process that can be ambiguous and less controllable. Extensive experiments demonstrate that our framework achieves quantitative performance improvements of 20% to 40% over current state-of-the-art methods, and better qualitative results. Our promising results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design. In addition, we newly contribute a real-scanned 3D human dataset featuring more intricate geometric details. We will make our code and data publicly available at https://github.com/yztang4/HaP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信