A Framework for Analyzing EEG Data Using High-Dimensional Tests.

Qiuyan Zhang, Wenjing Xiang, Bo Yang, Hu Yang
{"title":"A Framework for Analyzing EEG Data Using High-Dimensional Tests.","authors":"Qiuyan Zhang, Wenjing Xiang, Bo Yang, Hu Yang","doi":"10.1093/bioinformatics/btaf109","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The objective of EEG data analysis is to extract meaningful insights, enhancing our understanding of brain function. However, the high dimensionality and temporal dependency of EEG data present significant challenges to the effective application of statistical methods. This study systematically addresses these challenges by introducing a high-dimensional statistical framework that includes testing changes in the mean vector and precision matrix, as well as conducting relevant analyses. Specifically, the Ridgelized Hotelling's T2 test (RIHT) is introduced to test changes in the mean vector of EEG data over time while relaxing traditional distributional and moment assumptions. Secondly, a multiple population de-biased estimation and testing method (MPDe) is developed to estimate and simultaneously test differences in the precision matrix before and after stimulation. This approach extends the joint Gaussian graphical model to multiple populations while incorporating the temporal dependency of EEG data. Meanwhile, a novel data-driven fine-tuning method is applied to automatically search for optimal hyperparameters.</p><p><strong>Results: </strong>Through comprehensive simulation studies and applications, we have obtained substantial evidence to validate that the RIHT has relatively high power, and it can test for changes when the distribution is unknown. Similarly, the MPDe can infer the precision matrix under time-dependent conditions. Additionally, the conducted analysis of channel selection and dominant channel can identify significant channels which play a crucial role in human cognitive ability, such as PO3, PO4, Pz, P4, P8, FT7 and FT8. All findings confirm that the proposed methods outperform existing ones, demonstrating the effectiveness of the framework in EEG data analysis.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The objective of EEG data analysis is to extract meaningful insights, enhancing our understanding of brain function. However, the high dimensionality and temporal dependency of EEG data present significant challenges to the effective application of statistical methods. This study systematically addresses these challenges by introducing a high-dimensional statistical framework that includes testing changes in the mean vector and precision matrix, as well as conducting relevant analyses. Specifically, the Ridgelized Hotelling's T2 test (RIHT) is introduced to test changes in the mean vector of EEG data over time while relaxing traditional distributional and moment assumptions. Secondly, a multiple population de-biased estimation and testing method (MPDe) is developed to estimate and simultaneously test differences in the precision matrix before and after stimulation. This approach extends the joint Gaussian graphical model to multiple populations while incorporating the temporal dependency of EEG data. Meanwhile, a novel data-driven fine-tuning method is applied to automatically search for optimal hyperparameters.

Results: Through comprehensive simulation studies and applications, we have obtained substantial evidence to validate that the RIHT has relatively high power, and it can test for changes when the distribution is unknown. Similarly, the MPDe can infer the precision matrix under time-dependent conditions. Additionally, the conducted analysis of channel selection and dominant channel can identify significant channels which play a crucial role in human cognitive ability, such as PO3, PO4, Pz, P4, P8, FT7 and FT8. All findings confirm that the proposed methods outperform existing ones, demonstrating the effectiveness of the framework in EEG data analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信