Context-Aware Contrastive Representation Learning for Zero-Shot Biomedical Text Classification.

Ratri Mukherjee, Kishlay Jha
{"title":"Context-Aware Contrastive Representation Learning for Zero-Shot Biomedical Text Classification.","authors":"Ratri Mukherjee, Kishlay Jha","doi":"10.1109/bibm62325.2024.10822585","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical text classification refers to the task of annotating a biomedical text with its relevant labels from a candidate label set. Most of the existing approach operate in a fully supervised setting and thus heavily rely on human-annotated training data which is both labor-intensive and monetarily expensive. To address this, we propose to formulate biomedical text classification under the zero-shot learning (ZSL) paradigm that does not require any labeled training data and only relies on label surface names for training and inference. Specifically, we propose a new context-aware contrastive learning technique for ZSL that fully exploits the context information present in the biomedical text to generate semantically enriched feature representations needed for accurate zero-shot biomedical text classification. Unlike existing contrastive learning approaches that typically employ random text segmentation strategies to generate contrastive pairs, our approach utilizes the context information inherently present in biomedical text to generate semantically meaningful contrastive pairs. Extensive experiments on the largest available biomedical corpus validates the effectiveness of the proposed approach.</p>","PeriodicalId":74563,"journal":{"name":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2024 ","pages":"3611-3614"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bibm62325.2024.10822585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical text classification refers to the task of annotating a biomedical text with its relevant labels from a candidate label set. Most of the existing approach operate in a fully supervised setting and thus heavily rely on human-annotated training data which is both labor-intensive and monetarily expensive. To address this, we propose to formulate biomedical text classification under the zero-shot learning (ZSL) paradigm that does not require any labeled training data and only relies on label surface names for training and inference. Specifically, we propose a new context-aware contrastive learning technique for ZSL that fully exploits the context information present in the biomedical text to generate semantically enriched feature representations needed for accurate zero-shot biomedical text classification. Unlike existing contrastive learning approaches that typically employ random text segmentation strategies to generate contrastive pairs, our approach utilizes the context information inherently present in biomedical text to generate semantically meaningful contrastive pairs. Extensive experiments on the largest available biomedical corpus validates the effectiveness of the proposed approach.

基于上下文感知的生物医学文本分类对比表征学习。
生物医学文本分类是指用候选标签集中的相关标签标注生物医学文本的任务。现有的大多数方法都是在完全监督的环境下运行的,因此严重依赖于人工注释的训练数据,这既是劳动密集型的,也是昂贵的。为了解决这个问题,我们提出在零射击学习(zero-shot learning, ZSL)范式下制定生物医学文本分类,该范式不需要任何标记的训练数据,仅依赖于标签表面名称进行训练和推理。具体来说,我们为ZSL提出了一种新的上下文感知对比学习技术,该技术充分利用生物医学文本中存在的上下文信息来生成准确的零采样生物医学文本分类所需的语义丰富的特征表示。现有的对比学习方法通常采用随机文本分割策略来生成对比对,而我们的方法利用生物医学文本中固有的上下文信息来生成语义上有意义的对比对。在最大的可用生物医学语料库上进行的大量实验验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信