{"title":"Diffusion equation and rare fluctuations of the biased aging continuous-time random-walk model.","authors":"Yuanze Hong, Tian Zhou, Wanli Wang","doi":"10.1103/PhysRevE.111.024138","DOIUrl":null,"url":null,"abstract":"<p><p>We explore the fractional advection-diffusion equation and rare events associated with the ACTRW model. When waiting times have a finite mean but infinite variance, and the displacements follow a narrow distribution, the fractional operator is defined in terms of space rather than time. The far tail of the positional distribution is governed by rare events, which exhibit a different scaling compared to typical fluctuations. Additionally, we establish a strong relationship between the number of renewals and the positional distribution in the context of large deviations. Throughout the manuscript, the theoretical results are validated through simulations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024138"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024138","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the fractional advection-diffusion equation and rare events associated with the ACTRW model. When waiting times have a finite mean but infinite variance, and the displacements follow a narrow distribution, the fractional operator is defined in terms of space rather than time. The far tail of the positional distribution is governed by rare events, which exhibit a different scaling compared to typical fluctuations. Additionally, we establish a strong relationship between the number of renewals and the positional distribution in the context of large deviations. Throughout the manuscript, the theoretical results are validated through simulations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.