Asymptotic methods for confined fluids.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
E Di Bernardo, J M Brader
{"title":"Asymptotic methods for confined fluids.","authors":"E Di Bernardo, J M Brader","doi":"10.1103/PhysRevE.111.024144","DOIUrl":null,"url":null,"abstract":"<p><p>The thermodynamics and microstructure of confined fluids with small particle number are best described using the canonical ensemble. However, practical calculations can usually only be performed in the grand-canonical ensemble, which can introduce unphysical artifacts. We employ the method of asymptotics to transform grand-canonical observables to the canonical ensemble, where the former can be conveniently obtained using the classical density functional theory of inhomogeneous fluids. By formulating the ensemble transformation as a contour integral in the complex fugacity plane we reveal the influence of the Yang-Lee zeros in determining the form and convergence properties of the asymptotic series. The theory is employed to develop expansions for the canonical partition function and the canonical one-body density. Numerical investigations are then performed using an exactly soluble one-dimensional model system of hard rods.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024144"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermodynamics and microstructure of confined fluids with small particle number are best described using the canonical ensemble. However, practical calculations can usually only be performed in the grand-canonical ensemble, which can introduce unphysical artifacts. We employ the method of asymptotics to transform grand-canonical observables to the canonical ensemble, where the former can be conveniently obtained using the classical density functional theory of inhomogeneous fluids. By formulating the ensemble transformation as a contour integral in the complex fugacity plane we reveal the influence of the Yang-Lee zeros in determining the form and convergence properties of the asymptotic series. The theory is employed to develop expansions for the canonical partition function and the canonical one-body density. Numerical investigations are then performed using an exactly soluble one-dimensional model system of hard rods.

受限流体的渐近方法。
用正则系综可以很好地描述小颗粒数受限流体的热力学和微观结构。然而,实际计算通常只能在大规范集合中执行,这可能会引入非物理的工件。我们采用渐近方法将大正则观测值转化为正则系综,其中前者可以用非均匀流体的经典密度泛函理论方便地得到。通过将系综变换表述为复逸性平面上的轮廓积分,揭示了Yang-Lee零对确定渐近级数的形式和收敛性质的影响。利用该理论推导了正则配分函数和正则体密度的展开式。数值研究,然后进行了使用一个完全可溶的一维模型系统的硬棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信