Similarity learning with neural networks.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
G Sanfins, F Ramos, D Naiff
{"title":"Similarity learning with neural networks.","authors":"G Sanfins, F Ramos, D Naiff","doi":"10.1103/PhysRevE.111.025106","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we introduce a neural network algorithm designed to automatically identify similarity relations from data. By uncovering these similarity relations, our network approximates the underlying physical laws that relate dimensionless quantities to their dimensionless variables and coefficients. Additionally, we develop a linear algebra framework, accompanied by code, to derive the symmetry groups associated with these similarity relations. While our approach is general, we illustrate its application through examples in fluid mechanics, including laminar Newtonian and non-Newtonian flows in smooth pipes, as well as turbulent flows in both smooth and rough pipes. Such examples are chosen to highlight the framework's capability to handle both simple and intricate cases, and further validate its effectiveness in discovering underlying physical laws from data.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025106"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a neural network algorithm designed to automatically identify similarity relations from data. By uncovering these similarity relations, our network approximates the underlying physical laws that relate dimensionless quantities to their dimensionless variables and coefficients. Additionally, we develop a linear algebra framework, accompanied by code, to derive the symmetry groups associated with these similarity relations. While our approach is general, we illustrate its application through examples in fluid mechanics, including laminar Newtonian and non-Newtonian flows in smooth pipes, as well as turbulent flows in both smooth and rough pipes. Such examples are chosen to highlight the framework's capability to handle both simple and intricate cases, and further validate its effectiveness in discovering underlying physical laws from data.

神经网络的相似性学习。
在这项工作中,我们引入了一种神经网络算法来自动识别数据中的相似关系。通过揭示这些相似关系,我们的网络近似于将无因量量与其无因量变量和系数联系起来的潜在物理定律。此外,我们开发了一个线性代数框架,并附有代码,以导出与这些相似关系相关的对称群。虽然我们的方法是通用的,但我们通过流体力学中的例子来说明它的应用,包括光滑管道中的层流牛顿和非牛顿流动,以及光滑和粗糙管道中的湍流。选择这样的例子是为了突出框架处理简单和复杂情况的能力,并进一步验证其在从数据中发现潜在物理定律方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信