William Trickey, T J B Collins, I V Igumenshchev, V N Goncharov, A Shvydky
{"title":"Sensitivity of the dynamic-shell target to laser drive nonuniformities.","authors":"William Trickey, T J B Collins, I V Igumenshchev, V N Goncharov, A Shvydky","doi":"10.1103/PhysRevE.111.025210","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic-shell concept for inertial confinement fusion (ICF) uses an initially homogeneous target and a carefully shaped laser pulse to form a shell and implode it. The laser pulse consists of a series of pickets that drive shocks into the target. The first few shocks converge inwards and rebound from the center of the target, creating an expanding, low-density plasma. Subsequent shocks are launched into the expanding plasma and eventually coalesce to form a shell, which is then imploded with a traditional ICF laser pulse. This study describes radiation-hydrodynamic simulations that investigate the sensitivity of dynamic-shell targets to imperfections in the laser drive. A one-dimensional (1D) study looks at mistiming and power variations in the pickets and a two-dimensional (2D) study examines irradiation perturbations imposed by the laser-beam geometry. Simulations show that less than ∼2% power imbalance or 200 ps timing variation in the pickets is sufficient to keep the yield above 90% of the maximum. Additionally, the 2D simulations show that 72 or more beams are required to keep irradiation nonuniformities low enough to obtain fusion yields close to that of 1D simulations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025210"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025210","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic-shell concept for inertial confinement fusion (ICF) uses an initially homogeneous target and a carefully shaped laser pulse to form a shell and implode it. The laser pulse consists of a series of pickets that drive shocks into the target. The first few shocks converge inwards and rebound from the center of the target, creating an expanding, low-density plasma. Subsequent shocks are launched into the expanding plasma and eventually coalesce to form a shell, which is then imploded with a traditional ICF laser pulse. This study describes radiation-hydrodynamic simulations that investigate the sensitivity of dynamic-shell targets to imperfections in the laser drive. A one-dimensional (1D) study looks at mistiming and power variations in the pickets and a two-dimensional (2D) study examines irradiation perturbations imposed by the laser-beam geometry. Simulations show that less than ∼2% power imbalance or 200 ps timing variation in the pickets is sufficient to keep the yield above 90% of the maximum. Additionally, the 2D simulations show that 72 or more beams are required to keep irradiation nonuniformities low enough to obtain fusion yields close to that of 1D simulations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.