{"title":"NVU view on energy polydisperse Lennard-Jones systems.","authors":"Danqi Lang, Lorenzo Costigliola, Jeppe C Dyre","doi":"10.1103/PhysRevE.111.025420","DOIUrl":null,"url":null,"abstract":"<p><p>When energy polydispersity is introduced into the Lennard-Jones (LJ) system, there is little effect on structure and dynamics [T. S. Ingebrigtsen and J. C. Dyre, J. Phys. Chem. B 127, 2837 (2023)10.1021/acs.jpcb.3c00346]. For instance, at a given state point both the radial distribution function and the mean-square displacement as a function of time are virtually unaffected by even large energy polydispersity, which is in stark contrast to what happens when size polydispersity is introduced. We here argue-and validate by simulations of up to 30% polydispersity-that this almost invariance of structure and dynamics reflects an approximate invariance of the constant-potential-energy surface. Because NVU dynamics defined as geodesic motion at constant potential energy is equivalent to Newtonian dynamics in the thermodynamic limit, the approximate invariance of the constant-potential-energy surface implies virtually the same physics of energy polydisperse LJ systems as of the standard single-component version. In contrast, the constant-potential-energy surface is significantly affected by introducing size polydispersity.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025420"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025420","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
When energy polydispersity is introduced into the Lennard-Jones (LJ) system, there is little effect on structure and dynamics [T. S. Ingebrigtsen and J. C. Dyre, J. Phys. Chem. B 127, 2837 (2023)10.1021/acs.jpcb.3c00346]. For instance, at a given state point both the radial distribution function and the mean-square displacement as a function of time are virtually unaffected by even large energy polydispersity, which is in stark contrast to what happens when size polydispersity is introduced. We here argue-and validate by simulations of up to 30% polydispersity-that this almost invariance of structure and dynamics reflects an approximate invariance of the constant-potential-energy surface. Because NVU dynamics defined as geodesic motion at constant potential energy is equivalent to Newtonian dynamics in the thermodynamic limit, the approximate invariance of the constant-potential-energy surface implies virtually the same physics of energy polydisperse LJ systems as of the standard single-component version. In contrast, the constant-potential-energy surface is significantly affected by introducing size polydispersity.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.