{"title":"Structure of quantum mean force Gibbs states for coupled harmonic systems.","authors":"Joonhyun Yeo, Haena Shim","doi":"10.1103/PhysRevE.111.024116","DOIUrl":null,"url":null,"abstract":"<p><p>An open quantum system interacting with a heat bath at a given temperature is expected to reach the mean force Gibbs (MFG) state as a steady state. The MFG state is given by tracing out the bath degrees of freedom from the equilibrium Gibbs state of the total system plus bath. When the interaction between the system and the bath is not negligible, it is different from the usual system Gibbs state obtained from the system Hamiltonian only. Using the path integral method, we present the exact MFG state for a coupled system of quantum harmonic oscillators in contact with multiple thermal baths at the same temperature. We develop a nonperturbative method to calculate the covariances with respect to the MFG state. By comparing them with those obtained from the system Gibbs state, we find that the effect of coupling to the bath decays exponentially as a function of the distance from the system-bath boundary. This is similar to the skin effect found recently for a quantum spin chain interacting with an environment. Using the exact results, we also investigate the ultrastrong coupling limit where the coupling between the system and the bath gets arbitrarily large and makes a connection with the recent result found for a general quantum system.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024116"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
An open quantum system interacting with a heat bath at a given temperature is expected to reach the mean force Gibbs (MFG) state as a steady state. The MFG state is given by tracing out the bath degrees of freedom from the equilibrium Gibbs state of the total system plus bath. When the interaction between the system and the bath is not negligible, it is different from the usual system Gibbs state obtained from the system Hamiltonian only. Using the path integral method, we present the exact MFG state for a coupled system of quantum harmonic oscillators in contact with multiple thermal baths at the same temperature. We develop a nonperturbative method to calculate the covariances with respect to the MFG state. By comparing them with those obtained from the system Gibbs state, we find that the effect of coupling to the bath decays exponentially as a function of the distance from the system-bath boundary. This is similar to the skin effect found recently for a quantum spin chain interacting with an environment. Using the exact results, we also investigate the ultrastrong coupling limit where the coupling between the system and the bath gets arbitrarily large and makes a connection with the recent result found for a general quantum system.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.