Rui Ye, Yi-Ming Mao, Yi-Ran Fei, Yue Shang, Ting Zhang, Zhe-Zhong Zhang, Yong-Lin Liu, Jun-Yu Li, Shi-Liang Chen, Yi-Bo He
{"title":"Targeting ferroptosis for the treatment of female reproductive system disorders.","authors":"Rui Ye, Yi-Ming Mao, Yi-Ran Fei, Yue Shang, Ting Zhang, Zhe-Zhong Zhang, Yong-Lin Liu, Jun-Yu Li, Shi-Liang Chen, Yi-Bo He","doi":"10.1007/s00109-025-02528-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02528-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.