Flow dynamics of different particle shapes in a rectangular silo.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Muhammad Ahmed Hanif, Devaraj van der Meer
{"title":"Flow dynamics of different particle shapes in a rectangular silo.","authors":"Muhammad Ahmed Hanif, Devaraj van der Meer","doi":"10.1103/PhysRevE.111.025416","DOIUrl":null,"url":null,"abstract":"<p><p>The present work investigates the effect of using six different particle shapes of equal volume on the discharge process of a rectangular silo with adjustable width, equipped with a flat bottom orifice opening of varying size. We find that the discharge rate decreases with the increasing aspect ratio of the particles for both lentil-shaped (oblate) and rice-shaped (prolate ellipsoidal) particles and macaroni-shaped particles show the lowest discharge rate among all the particle shapes. In addition, the silo width influences the discharge in such a way that the rates at which different particle shapes flow out from the system become more distinguishable at smaller silo widths. We observe that the velocity profile near the orifice opening becomes narrower and less sharp with increasing aspect ratio for both lentil- and rice-shaped particles. Moreover, the silo width does not have a significant influence on the velocity profile very near to the orifice, but, its influence becomes more noticeable with increasing height within the silo.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025416"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025416","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The present work investigates the effect of using six different particle shapes of equal volume on the discharge process of a rectangular silo with adjustable width, equipped with a flat bottom orifice opening of varying size. We find that the discharge rate decreases with the increasing aspect ratio of the particles for both lentil-shaped (oblate) and rice-shaped (prolate ellipsoidal) particles and macaroni-shaped particles show the lowest discharge rate among all the particle shapes. In addition, the silo width influences the discharge in such a way that the rates at which different particle shapes flow out from the system become more distinguishable at smaller silo widths. We observe that the velocity profile near the orifice opening becomes narrower and less sharp with increasing aspect ratio for both lentil- and rice-shaped particles. Moreover, the silo width does not have a significant influence on the velocity profile very near to the orifice, but, its influence becomes more noticeable with increasing height within the silo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信