Scaling behavior in the number theoretic division model of self-organized criticality.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Rahul Chhimpa, Avinash Chand Yadav
{"title":"Scaling behavior in the number theoretic division model of self-organized criticality.","authors":"Rahul Chhimpa, Avinash Chand Yadav","doi":"10.1103/PhysRevE.111.024108","DOIUrl":null,"url":null,"abstract":"<p><p>We revisit the number theoretic division model of self-organized criticality [B. Luque et al.Phys. Rev. Lett. 101, 158702 (2008)10.1103/PhysRevLett.101.158702]. The model consists of a pool of M-1 ordered integers {2,3,⋯,M}, and the aim is to dynamically form a primitive set of integers, where no number can be divided or divisible by others. Using extensive simulation studies and finite-size scaling method, we find the primitive set size fluctuations in the division model to show power spectral density of the form 1/f^{α} in the frequency regime 1/M≪f≪1/2 with α≈2 (different from α≈1.80(1) as reported previously) along with an additional scaling in terms of the system size ∼M^{b}. We also show similar power spectra properties for a class of random walks with a power-law distributed jump size (Lévy flights).</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024108"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024108","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the number theoretic division model of self-organized criticality [B. Luque et al.Phys. Rev. Lett. 101, 158702 (2008)10.1103/PhysRevLett.101.158702]. The model consists of a pool of M-1 ordered integers {2,3,⋯,M}, and the aim is to dynamically form a primitive set of integers, where no number can be divided or divisible by others. Using extensive simulation studies and finite-size scaling method, we find the primitive set size fluctuations in the division model to show power spectral density of the form 1/f^{α} in the frequency regime 1/M≪f≪1/2 with α≈2 (different from α≈1.80(1) as reported previously) along with an additional scaling in terms of the system size ∼M^{b}. We also show similar power spectra properties for a class of random walks with a power-law distributed jump size (Lévy flights).

自组织临界数论划分模型中的尺度行为。
本文重新讨论了自组织临界的数论划分模型[B]。Luque等。[j].科学通报,2009,(5):391 - 391。该模型由M-1个有序整数{2,3,⋯,M}组成的池组成,其目的是动态地形成一个整数的原始集合,其中任何数都不能被其他数整除或整除。通过广泛的模拟研究和有限尺寸缩放方法,我们发现划分模型中的原始集大小波动显示了1/f^{α}在频率范围1/M≪f≪1/2中α≈2(不同于先前报道的α≈1.80(1))的形式1/f^{α}的功率谱密度,以及在系统尺寸方面的额外缩放~ M^{b}。我们还展示了一类具有幂律分布跳跃大小的随机漫步(lsamvy flights)的类似功率谱特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信