Outlier-resistant physics-informed neural network.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
D H G Duarte, P D S de Lima, J M de Araújo
{"title":"Outlier-resistant physics-informed neural network.","authors":"D H G Duarte, P D S de Lima, J M de Araújo","doi":"10.1103/PhysRevE.111.L023302","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in machine learning have introduced physics-informed neural networks (PINN) as a valuable tool for addressing dynamics through governing equations and experimental observations. Outliers can be present in measurements and significantly affect the accuracy of the solutions provided by PINN. To overcome this limitation, we construct an outlier-resistant PINN (OrPINN) based on Tsallis statistics. We investigate the robustness of OrPINN in describing the acoustic and linear elastic wave dynamics under various outlier-level scenarios. We find that the OrPINN can improve the accuracy of the solutions even when the data is highly corrupted.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2","pages":"L023302"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L023302","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in machine learning have introduced physics-informed neural networks (PINN) as a valuable tool for addressing dynamics through governing equations and experimental observations. Outliers can be present in measurements and significantly affect the accuracy of the solutions provided by PINN. To overcome this limitation, we construct an outlier-resistant PINN (OrPINN) based on Tsallis statistics. We investigate the robustness of OrPINN in describing the acoustic and linear elastic wave dynamics under various outlier-level scenarios. We find that the OrPINN can improve the accuracy of the solutions even when the data is highly corrupted.

抗离群值物理信息神经网络。
机器学习的最新进展已经引入了物理信息神经网络(PINN),作为通过控制方程和实验观察来解决动力学问题的宝贵工具。异常值可能出现在测量中,并显著影响PINN提供的解决方案的准确性。为了克服这一限制,我们基于Tsallis统计构造了一个抗离群值的PINN (OrPINN)。我们研究了OrPINN在各种异常值水平下描述声学和线弹性波动动力学的鲁棒性。我们发现,即使在数据严重损坏的情况下,OrPINN也能提高解的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信